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INTRODUCTION TO SU4 AND THE PROPERTIES OF CHARMED HADRONS 

Martin B. Einhorn 
Theoretical Physics Department 

Fermi National Accelerator Laboratory, Batavia, Illinois 605iO 

: 

Introduction 

The following is a series of lectures in the Fermilab Academic Lecture 

Series. The audience consisted mostly of high-energy experimentalists, 

primarily post-doctoral physicists, advanced graduate students (doing thesis 

work in conjunction with experiments being carried out at Fermilab), and 

physicists among the Fermilab staff or User’s Group. 

The purpose of the lectures, as I defined it, was to enable those 

attending to better appreciate the theoretical excitement surrounding the idea 

of a fourth, charmed quark and to provide the foundation necessary to com- 

prehend the rapidly growing literature on this subject. I anticipate that the 

useful life of these lectures will be short. If charmed hadrons are not 

experimentally found, interest will quickly wane. If, on the other hand, 

charm is discovered, these lectures will soon be displaced by far more 

complete and detailed discussions. 

I would like to thank J. K. Walker for organizing the Fermilab 

Lecture Series, Chris Quigg with whom I learned most of what is contained 

herein, and Ben Lee for his encouragement and advice. Discussions with other 

members of the Theoretical Physics Department have been rewarding and enjoyable. 

I am especially grateful to Bill Francis of the University of Illinois for volunteer- 

ing to transcribe my chicken tracks into a form suitable for distribution. 
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However, I am responsible for the final form, and any errors are mine. 

With regard to errors, I’d like to borrow a word of advice from Ben Lee: 

“If you find a sign or phase different from mine, youlre probably correct. 

If you reach a qualitatively different conclusion, you’re probably wrong. ” 

However, I would appreciate being informed of anything which needs 

correcting. 

Martin B. Einhorn 
February 197 5 
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CHAPTER I: INTRODUCTION AND SU2 

In the preceding lecture series, Ben Lee has motivated the introduction 

of a fourth quark from the requirement that there be two “hadronic” doublets 

for the Weinberg-Salam Theory. Long before gauge theories had been shown 

to be renormalizable even in the presence of spontaneous symmetry breaking, 

Bjorken and Glashow [Phys. Letters 5, 255 (1964) ] had motivated a 

fourth quark from the simple requirement of a lepton-hadron symmetry. 

They observed that there are two doublets of spin one-half leptons, the 

electron and its neutrino “e 
i ! em and the muon and its neutrino tilt) Moreover, 

each has the property that the electric charge of the electron and muon are 

the same and the neutrinos have charge one unit greater. If we consider 

three spin one-half quark fields as underlying the observed hadrons, then 

(from the Gell-Mann-Nishijima formula), we find two quarks, d and s, of 

equal charge and one quark, u, of charge one unit greater. If we wish to 

complete an analogy with leptons, we need a fourth quark c whose charge 

equals that of the u quark. Thus 

” e 
% 

i I 

c 

e- 
would be analogous to 1 

i 1 

. 

P- S 

An objection to the analogy might be the apparent separate conservation of 

electronic and muonic lepton number. In addition, the particle spectrum 

seemed quite remote from any such scheme and, indeed, the idea lay dor - 

mant for a few years, Bj and Glashow chose the leptonic weak current to be 

of the form L = v v the equality of diagonal elements expressing 
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electron-muon universality. The hadronic charged current was chosen to be 

.- 
J=Z--C -- 

-i 
-sin 8C cos 6C 
cosOc sin BC 

I shall motivate this form further in Lecture IV [I’ve suppressed the space 

time structure vi-’ (1 - ~5) in each case.] A few years later, in a seminal 

paper, Glashow, Iliopoulous, and Maiani [Phys. Rev. D2 1285 (1970)) ,’ 

observed that this form makes the algebra of weak current simale, 

[J, J+] = Cc + iiu -ad - ss, 

and etiminates induced strangeness-changing neutral currents, to first order in 

the Fermi coupling GF. 

Without further ado, then, let us consider a world of four quarks, 

whose strong interactions are invariant under SU4. except for quark masses. 

Because they haven’t been seen, we expect that the fourth, charmed quark is 

much heavier than noncharmed quarks. (As it will turn out, we might expect 

its mass to be about 20 times the strange quark mass. i To understand SU 4’ 

we need to be familiar with SU3. To understand SU5, we need SU2. 

(fortunately this series rapidly converged). 

Before embarking, let me recommend to you several discussions of 

SU5 at an introductory level: 

P. Carruthers, Introduction to Unitary Symmetry (Interscience, 

N. Y., 19661. 

H. J. Lipkin, Lie Groups for Pedestrians (North Holland Publishing 

co. ) Amsterdam, 1966). 

F. E. Low, Symmetries and Elementary Particles (Gordon & Breach, 

N. Y. , i967). 
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R. H. Dalitz, lectures delivered at Les Houches Summer School of 

Theoretical Physics, C. Dewitt and M. Jacob, Editors (Gordon & Breach, 

N. Y. , 1965). 

Of these, the latter two employ the tensor formalism I shall use. I 

would remind you that a systematic guide to the literature may be found in 

M. Gell-Mann and Y. Ne’eman, The Eightfold Way (W. A. Benjamin, N. Y. , 

1964). For a general treatment of Lie Groups, see M. Hamermesh, 

Group Theory (Addison-Wesley, Reading, 1962) and R. E. Behrends et al., 

“Simple Groups and Strong Interaction Symmetries, I’ Rev. Mod. Phys. 2, 

1 (1962). 

I shall begin with SU2. I assume that you already are well acquainted 

with the role of isospin symmetry in particle physics, so we can exploit this 

familiar situation to introduce a formalism and notation which generalizes 

easily to SU3. 

SU2 -- Fundamental Representation 

SU2 is defined as that special group of unitary 2 x 2 matrices with 

determinant +1. This is the group structure associated with isospin. 

The Fundamental Representation , $ of SU2 will be denoted by the 

doublet 

Any SU2 transformation is of the form 

.-e * 
U(Z) = elcr ’ G, 

but it is sufficient to work with infinitesimal transformations 

U(T) = 1 + i:. 5. 
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These G’s are the generators of the group. Their form is restricted by the 

group properties. 

Unitarity *G’s are hermitian. 

det = 1 => G’s are traceless. 

Only three independent 2 X 2 matrices with these properties exist. It 

is conventional to choose the generators to be proportional to the usual Pauli 

matrices. 

&+ u1 = (y ;) u2 = (pa’) 

1 0 
u3 = 0 -1 . ( 1 

The generators satisfy 

[Gi, Gj] = ie G iJk k 
. 

This relation defines the Lie algebra of the group. It is a property of the 

group, not the particular representation. At most, one of the three generators 

is diagonal. Again, this is a property of the group. Eigenvectors of G3 

have a fundamental importance independent of particular representation. 

The eigenstates will be denoted in the representation above, as 

for +1/Z and 
0 
i for -i/2. 

Another well-known example of an isodoublet is the nucleon pair N = 

formed by proton p and neutron n. 
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::; 
Next, we want to consider the Conjugate Representation, 2 . This 

representation transforms as follows 

4J:: - If’; +;‘: 

where 

it +* = +2t - $1 
l )r,i 

. 4J $2 

If U’ is generated by 2, the infinitesimal transformation associated with U” is 

.L 
U(T)* = 1 - iz.6’. 

So, U” is generated by l? = -c*. It is important to note that all eigenvectors 

of G3 are still eigenvectors of H3 but with opposite sign. This suggests that 

2 and g” may be equivalent. 
Nn 

They are: 

(Proof of equivalence) 

Can we find a matrix S such that S+* transforms like +? 

w ” - U(wJ ::: ) 

J1$: 
_ (s-1 us)$* = u“: +:::* 

An S is needed such that 

s-1 us = uzx or, 

s-1 & = -$. 

S must commute with G2 while anticommuting with Gi and G3. Any matrix 

proportional to o2 will do. Pick 

S=i(T2= O1 
( ) -10 



so 
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34” =(iq;;) = (‘ti)Z (;I). 
where the symbol : is to be read “transforms like”. If the process of com- 

plex conjugating is defined to include this nasty minus sign, ?, and&’ will 

transform with exactly the same equations. This can be done in an invariant 

way by introducing the totally antisymmetric symbol E QQ 
4 

=E . 

cap = -cpa c&p = 1,2 

Eli = EL2 = 0 El2 = -5i = 1. 

This symbol can be shown (Exercise) to be an invariant tensor under SU2. 

We have shown above that 

There is one other invariant tensor in SU2, 6@. As usual 
P 

6; = 6’; = 0 and 6: = 6; = 1. 

Exercise: Show that 15~ is on invariant tensor and that E VP 
P 

E = - .g 
@Y Ly’ 

Let us discuss another very important representation, the so-called regular 

representation, & (isovector). Recall that the generators obey the algebra 

[Gi, Gj] = icjkGk. 

One can use the structure constants to define a representation whose dimen- 

sion equals the number of generators of the group. 
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Define (T ) q -i e.. 
k ij ijk’ 

Then [T.T]=+i k P FkPm Tmm 

Exercise: Prove the above relation. 

Hint: E.. ijk ‘Pmk = 6iP 6jm - ‘im ~1’ 6. 

Aside: Given any Lie Algebra[Gi, Gj] = ifijkGk, one can always define a 

representation of dimension equal to the number of generators in a manner 

similar to the above construction. Just define ( Tk) Z -if.. 
il 

1Jk 
. (The proof 

depends on Jacobi’s identity. ) 

It comes as no surprise that i/2 T (si $ 1- Ti (Exercise) 

It is useful to define o+ = i/2 (of *is2), so that 

T”+ + = iid 

o3 $ = &iu - ;id) 

Interpreted as particle states, these three combinations correspond to 

the three charge states of an isovector multiplet, e.g., r-, no/&, rTlf, 

respectively. States in a regular representation can be arranged in matrix 

form (sometimes convention for calculations) as follows: 

ii-= +pi = ; LjzLp.; = [?dz) ;(uEwdj = [f, _ ; 



Products of Representations/Irreducible Representations 

-. ry . ..a 
Consider the tensor T 

1 n ; Jlal II, @2”’ Ly 
+ n transforming like products 

of the fundamental representations. It must transform as follows: 

TQ1’ 
.*a al’ (Y’ (Y1...a Ql...Ql 

ne,U . ..Un T n- =Ti n. 
al an 

(Y *..a 
It is easy to see that, if the indices of T 

1 
n possess a permutation 

symmetry, this symmetry is preserved by the transformation. 

By definition, an irreducible representation of the group contains no 

subset of matrices which transform among themselves under the group 

transformations. Since tensors with a definite permutation symmetry do 

transform among themselves, it is clear that irreducible representations 

must have such symmetry properties. This is why a study of the symmetric 

group is a useful adjunct to a study of groups of linear transformations. 

(See Hammermesh, Chapters 7 and 10. ) 

Now apply these ideas to&&, The most general element must look 

like 4 a P J, . This is not irreducible. Since the irreducible parts must have 

a definite symmetry, decompose this as follows: 

JI@$P = 1 (JIap +$P gJLy) 
2 +;(&JP-$P+Q). 

Often, the fundamental representation of a group is represented by a 

dot . or box n . We establish the convention that 2 boxes in a horizontal 

row correspond to a symmetric product of states, while 2 boxes in a vertical 

column correspond to an antisvmmetric combination. Thus the preceding 
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equation may be symbolized as 

.- nOIJ=cII@/j- 

The antisymmetric part of this decomposition is quite simple. (Y and p 

must be different to avoid a null result. The remaining two combinations are 

identical, except for sign: 

-9 1: $I$’ - G2 $f, e.g., for 2 nucleons, pn - np. 

This state corresponds to an isosinglet, I = 0, and can be identified with the 

deuteron. 

The completely symmetric part yields 3 states. 

+I 4J1 

&j--J-J ;(+1*2+$2$1) 
PP 

, e.g., for 2 nucleons, 

+J2 4J2 

k (pn+np). 
nn 

These states form an isotriplet, I = 1. 

It is established that 2..2 = A@L. It is important to repeat this for 

&g . Nothing new can emerge since 2” x 2: however, the notation that 

results will point the way for some general conclusions. Use tl~@z l p %. 
1: $1~2-$2$1z -+1$1-$2$2 = -($n+CY), e.g., .swa UU + d;i. 

We have learned the important result that the antisymmetric combination of 

the two upper indices transforms like the trace of an upper with a lower 

index. Next consider 
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This looks like 

+i [-{{i:f$2), e.g., (g ;l~dd):[~/fi,. 

Theorem: These phases will drive you crazy if you worry about them. My 

advice: Don!t worry. 

Since the singlet transformed like the trace, the isotriplet could also 

have been written 

(2 ; 
1 

= hp - z 6; (4Jy*y). 

The trace has simply been subtracted in an invariant way. 

This property of two antisymmetric indices transforming like the trace 

is much more general. It is easy to see that the antisymmetric piece of any 

tensor transforms under SU2 like a tensor of lower rank. 

e.g. Suppose a tensor is antisymmetric in any two indices, say (of and CZ~, 

then 

=“T 
Ycd3’. . an _ 

ypl...pm = v 

a . *-an 3 
p3...p 

m 

Since the basis for an irreducible representation must have a definite 

permutation symmetry, we can exploit this observation to assume, without 

loss of generality, that the basis of an irreducible representation is symmetric 

in all its indices. 

Now, since the trace of a tensor is a subset of the original tensor 

which is invariant under group transformations, it must be that, for a 
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tensor to form the basis of an irreducible representation, all traces (con- 

. . tractions of upper with lower indices) must vanish. We combine this with 

the preceding requirement to conclude that the tensor basis for an irreducible 

representation of SU 2 must be totally symmetric and traceless. In fact, 

these conditions are not only necessary but also sufficient, though we won’t 

take the time to prove it here. This important result will be seen to hold 

also for SU3 but, alas, not for SU4. - 

As a quick example of how we can utilize this result, suppose we combine 

a triplet with a doublet: 3&@~=~,2 r*; (tooU=ZJop). 

The symmetric part ;3 is 

b 
just(a-p) 

This looks very complicated, but it is not. 

%P.Y f 2 
ff 

uuu A 

%P $2 uud + udu + duu A+ 
I = 312 

as2 udd + dud + ddu A0 

all = 2 ddd A- 

Reflection Symmetry 

Use Condon-Shortley phase conventions so that you can look everything 

up in tables 

U(a/I,13> = e+i(ul -7 I, I3 > 

= D; , I (~)\I, I;> . 
3 3 
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Reflection corresponds to a rotation of ‘pi about the 2-axis. For this the D 

is simple. 

I 
DT; I3 (O,r, 0) = C-1) 

1+13 

3; 13’ 

Call this operation R for reflection. 

RjL13> = C-1) 
1+13 

IL-I,> . 

Apart from the phase change, it merely flips the third component of isospin. 

Charge Conjugation 

We want C 1 particles > = (phases) [antiparticles > . Now it has 

already been shown that, if the particle isospinor is P 
0 n ’ the conjugate 

spinor must be . so 

C ) I, I3 > = (phases) 1 I, - I3 > . 

So C flips the third component of isospin. 

G-Parity 

If we combine these two operations, we have an operator called G-parity 

G = CR. 

This leaves the isospin structure of the states unchanged while changing all 

particles to antiparticles. 

Consider applying G to any pion state. Since both particles and anti- 

particles lie in the same isospin multiplet 
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G 1 any pion system > = (phase) 1 exe~‘~,~~ > 

G-parity will be a good quantum number for this system. One can fix the 

phases to have 

‘dL13> = c,(-~)~II,I~) 

where Co is the charge conjugation eigenvalue for the neutral member of the 

multiplet. 

Aside: Worth noting that there exists no isospin multiplet which includes 

particle and antiparticle having half-integral spin. (Carruther’s Theorem). 

See P. A. Carruthers, Spin and Isospin in Particle Physics (Gordon and 

Breach, N. Y., 1971). 
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APPENDIX TO LECTURE I 

Dimension Counting 

(Y . ..(Y 
Dimension of totally symmetric tensor T 

1 m 
where (Ye can take 

on N different values is 

N+m-1 
m ). 

Ly . ..@ 

So dimension of T 
1 m . 

P,.-*P, 
1s 

(N+;-1) (N+;-1) . 

The trace conditions give (“z”;‘) (“,‘r; ‘) constraints, so the 

dimension of a totally symmetric traceless tensor is 

Dnm = N+g-2) (“+;-‘)(* + E2). 

For SU2, (N = 2) 

Dnm =l+m+n. 

For SU3. (N = 3) 

Dnm =(m+ i)(n+1)(2+m+n)/2 

For SU2 and SU3, one can obtain these results more simply by essentially 

just counting, but it is sometimes useful to know the general result for 

arbitrary N. 
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II. REVIEW OF SU3 

=3--Fundamental Representation 

SU3 is defined as that special group of unitary 3 x 3 matrices with 

determinant + i. This is the group structure associated with the 

combination of isospin and strangeness. 

The Fundamental Representation, 2, of SU3 will be denoted by 

the triplet 

4J1 
+= 

i) 
+2 . 
4J3 

Much of what was said about SU2 remains valid for SU3. Any 

infinitesimal transformation is of the form 

U(f) = 1 +iz* G’ . 

The generators of SU3 are still hermitian and traceless, but now, of 

course, they are 3 x 3 matrices. There exists 8 such matrices that 

are independent. 

As usual some freedom exists in defining these generators. The 

desire to include isospin as a subgroup fixes three of these to be the 

Pauli matrices. Define 

Gi = ; A, . 1 
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Then, associating isospin with the 1 and 2 axes suggests 

Al=i”; j A2z[; -;,) A3+l~~. 
These matrices leave the third component of the fundamental triplet 

untouched. 

The other 5 generators mix the isospin components with the new, 

third component of the triplet. One way to generate the five needed 

matrices is to exactly imitate the Pauli matrices but connecting 

components 2 and 3 and then 1 and 3. This is essentially what is 

done with one important exception. Such a procedure would yield 9 

X -matrices altogether, including 3 diagonal ones. However, these 

three are not linearly independent. (There can be only two linearly 

independent 3 x 3 diagonal, traceles 3 matrices. ) It is convenient to 

retain X 
3 

above and to choose the other, X 8, to be singlet in isospin. 

It then can be used to distinguish the new quantum number (called 

hypercharge) carried by the third component. So we define 

i 

0 

x4= 0 

1 

i 

0 

x5= 0 

i 
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0 0 0 

x6 = l 0 0 1 0 1 0 11 Pauli-type matrices 

i 0 0 0 i 0 0 0 -i 0 
)mixing 2 and 3 

A = 
7 

1 
A*= - 

47 

1 0 0 

0 1 0 

0 0 -2 

i 

components. 

i 

“new” type 
diagonal matrix. 

-J 
These generators satisfy the following algebra 

[ 1 Gi> Gj =if.. G 
qk k ’ 

All these fijk’s are just numbers like 1 or fi/ 2 or whatever which 

can be found tabulated in SU3 books. 

States will be labeled by the eigenvalues of the diagc.?al matrices. 

G3(i)= + (%, G3 (;) =-$ (;) G3 (;) =0 

G$) =$) G8 ia, =2+(;) Gg (&i=-$ 

A two-dimensional diagram is now needed to display these states. 

We plot the eigenvalues of G3 along one axis and GS along the other. 
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It is conventional to plot Y = V+ G8 rather than Gg (so that baryons 

and mesons will have integer values of Y). The fundamental triplet 

presents the famous triangular pattern 

4Y=43 2 G8 

d 113 u 

* 
-112 112 G3 

Plots like this of eigenvalues of diagonal generators are called weight 

diagrams. 

Conjugate Representation 

Denote the fundamental triplet of the conjugate representation, 

( 
2’: * += + 2% 

lJ3 
The generators for the conjugate representation will be 

In particular, this means that 

H3 = -G3 and Hs = -G8 . 
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This is extremely important. H3 still has the same eigenvalues as 

G3. So, if isospin were the only thing around, a similarity transform 

could be found to demonstrate the equivalence of the regular and 

conjugate representations. This is, in fact, just what was done for 

SU2. Now, however, there is another matrix to worry about, Hg. 

Since its eigenvalues are completely different from those of Gg, no 

such procedure can be followed here. (Prove this. ) So the conjugate 

representation is a completely independent representation of SU 
3’ 

(In general, a representation is equivalent to its conjugate if and only 

if its weight diagram is unchanged by inversion. ) The weight diagram 

for L* is: 

Products of Representations 

As in SU2 there are exactly three invariant tensors in SU3. These 

are the completely antisymmetric symbols and the Kronecker delta 

symbol. 

E.. 
ijk 

1Jk 
=E (E 123 

El) ) and i, j,k = 1, 2, 3. 

(Exercise: Prove that these are invariant tensors ). 
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These will be used in the following discussion. 

Now consider the product 3 60 2. Its general term is of the form 

+‘$j, but this is reducible. Attack this by separating the symmetries. 

completely completely 
symmetric antisymmetric 

The antisymmetric part will be investigated first. We shall show that 

the antisymmetric part of +‘$I transforms like 2: 

(Proof. ) 

The set of objects E.. 
1Jk 

Jii$j is identical to the set of objects 

forming the antisymmetric part of +i+j written above. For example, 

Cj3&j = E123+1+2 + c213+2d 

= $$2- $2+1 . 

Once the antisymmetric terms are written in this way, it is clear 

that they must transform like the 2 . For completeness the proof is 

sketched. Under a transformation U 

E.. +‘ICIJ-E.. u’,u?,$. 
i’ ” 

1Jk 1Jk 1 J 
+J 

. . .I 

+ Ei ‘j ,k,KJ-l$‘ul $J 

but U 
-1 

=u+, so 
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Ei.j’k* 
u8;, +i’+j ’ . 

So, finally, 

Eijk &j - u*;, Qj .,J’d’). 
This is precisely the transformation law for 3 . 

This tensor notation developed above is quite useful. It is clear, 

for example, that 

Eijkw+k must transform like a singlet 

(diagram 
i3 

L 

. . 
An immediate generalization of our little exercise with tJ~l+j - $‘$I’ is: 

Theorem: If a tensor is antisymmetric in any 2 upper (lower) indices, 

it is equivalent to a tensor with 2 fewer upper (lower) 

indices and one additional lower (upper 1 index. 

e.g., 
Lf Tiil213 *** im 

~~~~ . . . jm 
is antisymmetric in i and i 1 2, then 

E. . . 
Tti12.’ * . lrn + T,13,14 ’ . . lrn 

‘n+i1112 Ji”‘3n 
. 

jijZ’*‘jnjn+i 

What about traces? Well, for the same reasons discussed in 

su2. an irreducible tensor representation must have all traces 

(contractions 1 give a null result. 

As before, these necessary conditions are sufficient and so, the most 

general, irreducible tensor representation of SU3 is a traceless tensor, 

symmetric in all upper and lower indices. 
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As we remarked earlier, it has dimension 

D”, = 
(m+i )(n+i )(m+n+Z) 

2 
. 

Meson Octet 

In the quark model of SU3, the pseudoscalar mesons are identified 

* 
with quark-antiquark pairs, This leads to 2 8 2 . Its general term 

is I+‘+~, but this is reducible. 

One irreducible subgroup is the singlet trace $k~k . 

If the singlet is removed in an SU3 invariant way, the result is 

g: 4’~~ - f +J~+~E T; . 

This has zero trace. It is an 8-dimensional irreducible representation, so 

It is clear that (Tij4’ = Tf , 
1 

so the conjugate octet is not distinct. 

To remove the mystery of the notation, all the states are written 

out here . 

1 - 
T3 

= us 

T; =d: 

Pseudoscalar 
Particle 

K+ 

K0 

T; = ud 

.x 

1 

1 

0 
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-I3 

Pseudoscalar 
Y Particle - 

T; =d; -1 0 

T; = s; -II 2 -1 

T; = sd w2 -1 

T: = $I; - + (d;i+s> j 0 0 

T; = $dd - $ (u;i&, 0 0 

T; = $ s; - $ (usdd) 0 0 

K- 

K0 

Not all independent 
since trace must 
be zero. 

Since the rrc state is fixed by isospin symmetry, we write 

0 T: - T; 
Tr = ‘L( u; - dd) and the normalized 

hit d-T 

orthogonal state is 

0’ = d; T; = -&- (u; + dr? - 2s;) . 

The rr” and n 
0 

are the central members of the octet. The rr” has total 

isospin one, the no total isospin zero. These states form the famous 

picture Y 

K0 

t 

K+ 
X X 

x 

lr & “,+ * I3 

X X 
K- K0 
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There remains a singlet quark-antiquark, the n ’ or X0 with 

rl ’ = L( u;+dd+s:). 
e 

Both no and n ’ are isosinglets. Because SU3 is not an exact strong 

interaction symmetry, it could be that physical states are best 

described by orthogonal linear combinations of no and n ‘. It seems, 

however, for pseudoscalars, such mixing is small. We have 

suppressed a discussion of the spins of the quarks, but,of course, 

a complete treatment would require that we take into account the 

spin one-half nature of the quarks. The above particle names corr,espond 

to a pseudoscalar meson. (Because a fermion and its antifermion have 

opposite intrinsic. wity, a qq state in an S-wave forms a pseudoscalar. ) 

If, on the other hand, the quarks are combined to form a vector particle, 

($v ‘I+), the particle names are,in the same order presented above, 
- + - :;- 

K 
*+ 

, K 
::o 

, p , p , K , K 
*o 0 

, p , wg and wi. I would remind you that 

the physical states appear to require substantial mixing between w8 

and o 1, giving particles called w and 4. They are approximately 

associated with 

c.J=&J;+~;~) = -;?i-$+‘%Q 
2/z 

r$= - ss = &(Wi - dL,,, 

This is called”canonica1 mixing” and is motivated by the supposition 
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that SU3 breaking corresponds to the strange s quark being more 

massive than u and d (which remain degenerate because of isospin 

invariance ). 

I haven’t time to go into all the consequences of mixing but I just 

wanted to refresh your memories about the sort of questions which 

confuse the identification of states with equal isospin and hypercharge. 

Notice that the correct particle identification is made easier by 

a familiarity with the isospin multiplets . Similarly it will turn out 

to be useful to know the SU3 mutliplets for picking out physical states 

from SU4 multiplets. 

Other SU2 Subgroups of SU3 

By convention the 1 and 2 indices of the fundamental triplet 

correspond to an SU2 subgroup called isospin. Clearly indices 2 and 3 

as well as 1 and 3 must form SU2 subgroups too. 

Operations mixing 1 and 2 but leaving 3 unchanged are called I- 

spin operations. 

Operations mixing 2 and 3 but leaving 1 unchanged are called U- 

spin operations. 

Finally, operations mixing 3 and 1 but leaving 2 unchanged are called 

V-spin operations. 
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’ I-spin 

d XL/.-- u 

These subgroups can be very useful since SU2 is somewhat 

easier to manipulate than SU3. 

Charge Operator/ U-Spin 

Gell-Mann and Nishijima gave the rule for the charge operator 

Q= 13+; =G3+& 
d3 8’ 

For the quark states which compose the fundamental triplet 

u Q =2/3 

d Q = -i/3 

S Q = -i/3 

Note that U-spin operators mix d- and s-quarks only; ie., U-spin 

operators only connect states with equal charge. At this point it is 

interesting to write down the electromagnetic current in the simplest 

quark model-- 
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J = t ej +jyp$J . 
’ j 

Ignoring the space-time structure 

J = $u - $(dd+;s) 

id + is is a U-spin singlet (compare to id + ;u in isospin). 

Also iu is a U-spin singlet. 

The electromagnetic current, then,transforms like a U-spin 

singlet. This has an interesting consequence. Just as G-parity was 

defined for i,zospin, so G u -parity can be defined in the U-spin subspace: 

-inU 

GU 
E CRU G Ce ’ 

Applied to members of the U-spin triplet contained in the SU3 octet 

of mesons gives, for example, 

just like 

GU 
1 K”> = - ) K”> 

I + GI p > = +T+> . 

Now one can show that, in the limit of exact SU3 symmetry, 

a photon cannot produce neutral kaon pairs: 

Consider ee - Y” -. K”z . This process involves the matrix 

element of the electromagnetic current between the vacuum and 
- 

the K°Ko state. 
- - 

CO 1 J) K°Ko> = CO) G;’ GUJ G; GUI K°Ko> 

If the vacuum is symmetric, then 



-3i- 

- - 

<o~J~K~K~> = <O)GUJG 
-1 

G / K°Ko> * 
u v 

Since the current isa singlet under U-spin, but odd under charge 

conjugation, 

GUJG;’ =-J . 

- - 

Using 
Gu 

-parity symmetry, GUI K°Ko> = / K°Ko> , so that 

- - 
<OIJ/K°Ko. =- <O/J]K’K’>. 

Thus, this matrix element vanishes in the limit of SU3 symmetry. 

(Later, we will find similar applications of SU2 subgroups of SU4 

representations. ) 

Regular Representation of SU3: &A 

As indicated in Chapter I, a representation of a Lie Algebra can 

awalys be constructed from the structure constants by defining 

(Fk Jij = -i f.. qk ’ 

We thus obtain eight 8 by 8 matrices such that [ Fi, Fj 1 = i f. F ijk k 

(Exercise: Prove this. ) 

It will come as no surprise to you that 

$ $hk $ g Fk (Prove this, too) 

More explicitly, the left -hand- side is 

+ (kk)ij$‘i $j = g (‘k)ij TS 
1 

where + = Gi$j - $ 6 i ($k$k) is the octet introduced previously. 
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(The singlet comes for free since Tr A k = 0. ) Thus the 1. h. s. is simply 

a rearrangement of the octet, and the B-dimensional regular representation 

is equivalent to this octet T! 
1' 

As we illustrated with SU,, we can 

represent the regular representation in matrix form 

p=fz$Xi+hi f ;j,r:+.r . 
‘ 

1 

.9= 

/ 

0 
l+L + 

TI 
/I d-2 6 

K+ 
\ 

K0 

K0 --4-v / 
hia 

(Exercise: Discuss the transformation of punder an SU3 e-D 
l c2.A 

transformation U = e z . What is UPU -1, (Hint: take (Y to be 

infinitesimal. )) 

So far, we have described the mesons in terms of their quark- 

antiquark content. Baryons can also be arranged in SU3 multiplets 

such as the octets (containing the nucleon N) and decuplet (containing 

the (3, 3) resonances A). As you know, these particles can be 

represented as if they were built of three quarks, so we must analyze 

3Q,2@2. 
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Baryons 

ij k The terms have the general form $ $J 4 , but this is reducible. Part of 

the work is already done since we discussed_3@2 earlier 

Z@>?)Z = (6@3&+)@2 =g$@y& 

Consider,:*@? first. These nine states are already known to form 

8@&, but an explicit representation is desired here. The set of objects 3 * 

has the form 

As previously shown, this set can be written as E.. 
uk 

G1$ which clearly demon- 

strates that they transform like + 
k’ 

Now>*@2 was reduced earlier as fol- 

lows : 

We can use the fact that $I, ‘- E.. 
1Jk 

$I$’ to convert this quark -antiquark 

decomposition into one involving 3 quarks. For example, consider the singlet 

diagramatically as 

Similarly, the octet 

or, applying E 
mnk 

to this, we get an alternate form 

(We used E 
mnk 

‘ijk = s”djn - tjjnLq. ) 
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[Gm, JjJ = ($[mJ+a + --E ‘3 mnP (3 

This octet has a mixed symmetry. By definition, it is antisymmetric in the 

first two quarks. 

Now consider b@ 3. There must be 18 states here. Y c It is important to 

recall that 6 is the symmetric combination 

2 : +‘+j + +A+ i E (tensOr){i’j}. 

One irreducible representation must be the totally symmetric combination, 

This is easy to write down 

12 : +1$J+k + $JJljlkqi + $kJ+j t 

t *J$‘+k t +l+kJ + qJk&Ji. 

As indicated, there are 10 states here. Denote these by the symbol 

(igk. 

Eight states remain to be discovered. These can be constructed very 

simply using our tensor notation. The symmetry in i and j is fixed by the 6; 

however, there is no reason why the third index cannot be made antisymmetric 

with either of these. In tensor notation this reads 

E ji k (*l$ + + $J )* = (tensor)pl, 
PJk 

This combination is already traceless upon contraction of its upper index 

with its lower index. This type of tensor is already known to transform as 

an 8~ Denote these states by the symbol (P+)al. The desired decomposition m 

is therefore some linear combination 

&,o 3+ : {$,$I Gk = Ai,+ lQJijk+ A8 + &@;] 
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The constants Ain and A 8 can be shown to be 

_. 
(Exercise: show this. ) 

In summary, 

~@,$@ JJ = 12,@,8*@ -8s 02 

The Baryon Decuplet QJ 

The easiest way to identify the states is to pick out the SU2 subgroups. 

These are obtained by setting O,i, 2, or 3 indices equal to 3. 

i,j,k # 3 : 

i 

10 II1 = {uuu} 
++ 

a uuu A 

hypercharge: Y =+I 
IOil = {uud} 0: udd + dud + ddu A’ 

10 122 = {udd} 0: udd + dud + ddu A0 

10 222 = {ddd} 0~ ddd A- 

let one index 

be 3 Y =o 

10 *I3 = {uus} 

10 123 = {uds} 

10 223 = {dds} 

y*+ 

y”’ 

Y”- 

let two indices 
be 3 

Y = -1 

10 133 = {uss) p0 

1O233 = {dss} s:“- 

let all indices 
be 3 

Y =-2 

The weight diagram looks like 
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The Baryon Octet 

In SU3 there are two distinct octets withinA@A@ A The one from 

2 @ 2 is symmetric in the first two indices; the one fromz*@,3-antisym- 

metric in the first two. Both have mixed symmetry properties. One might 

expect two such octets of baryons to appear in nature. This turns out not to 

be the case. The reason is the Pauli principle. To see this is a bit compli- 

cated, so let me first indicate how the Pauli principle can work to select a 

subset of states as physically allowed. Suppose we ignore spin altogether 

and the “quarks” were bosons, Then the ‘baryon” (spin zero) wave function 

would have to by symmetric under exchange of any two “quarks. ” Suppose 

the wave function were totally symmetric in space, i. e. , symmetric under 

position interchange. Then it would have to be symmetric in SU3, so its 

SU3 part would look like 

‘Qk + u&)jki + (zs)kij, 

8 
MA 

simply could not be used since it is antisymmetric. Now how does it 

work with spinor quarks? In the non-relativistic quark model, the lowest 

lying states are symmetric in space (no orbital excitation). The correct 

spectrum is obtained only by requiring the baryon wave function to be totally 

symmetric in space X spin X SU3. [Th’ is used to be called “quark statistics” 

and nowadays is described by supposing the quarks carry another quantum 

number (called color) in which the wave function is totally antisymmetric. 

This ad hoc device preserves the Pauli principle, but is not without physical 

consequences because the number of degrees of freedom of the fundamental 
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constitutents has been increased. ] To form a spin l/2 baryon requires a 

spin wave function of mixed symmetry. To obtain an overall symmetric 

spin x SU state requires a unique combination of 8 and 8 
3 93 -A 

Thus, as in 

the boson case, we are led to only 8 physically allowed states. I apologize 

for this long digression, but I do not wish to take the even longer path of 

introducing spin wave functions and discussing SU6 (and eventually SU8). If 

you wish to see the explicit wave function, see, e. g. , J. J. J. Kokkedee, 

The Quark Model (W. A. Benjamin, N.Y., 1969 ). (You may be concerned 

that the language used is non-relativistic, but the result that the Pauli 

principle Selects a unique octet is presumably covariant. I do not know where 

this has been discussed in all its painful detail. ) 

But now you can begin to appreciate why the decuplet has spin 312. We 

identified it with a totally symmetric SU3 state, (12) ijk 
, so, assuming no 

orbital excitation, it will have a symmetric space piece, so it must also be 

spin-symmetric. This requires that the spin of the 3 quarks all line up t t t 

to give spin 3 12. 

Returning to the baryon octet, where the discussion began, let us now 

display the 8 states with their associated quark content. 

dds - C- 

udd -n uud - p 

-&(ud + du)s - Co uus - c+ 

&-(ud - du)s - A0 

dss - Z- 
0 

us.9 - E 

or, on a weight diagram, 
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Y 
A 

n 
X PX 

c- co z+ 

A 3 I3 

Later, we shall be discussing non-leptonic decays of strange and 

charmed particles. To do so, we need to know how multiparticle states 

transform under SU3, e. g., what are the possible SU3 invariant combinations 

of two mesons, each of which lies in an octet? Consequently, the decompo- 

sition of the product S+@&will first be reviewed. This will serve, one 

more time, to illustrate the facility of this tensor formalism. 

8 05 contains 64 states. Since each octet transforms like Tkl, 8@,8- + 

must look something like 

j3@&- Tki T; E V;“. 

Now pick out the irreducible representations. One will be the totally sym- 

metric combination which is traceless. Define 

ij _ ij 
s.4 

ji ij ji 
= vkp + vkp + vjk + vfk . 

This is certainly symmetric in both upper and lower indices, but not trace- 

less. The correct totally symmetric, traceless irreducible tensor is 

(ZC 5 SiJ -(all traces). 

The notation should be obvious. There are 27 independent states here. 
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(Exercise: Work out the state explicitly. Prove there are 27 states. ) 

What other tensors are possible? The invariant tensor, E 
ijk 

, canbe 

used to isolate the antisymmetric combination of lower indices. 

Wkij _ ek4mV ij 
Pm 

This will be irreducible if it is made symmetric in its indices. 

cLo,o, kij _ = Wkij + Wijk + Wjki + wkji + Wjik + #ci, 

A tensor completely symmetric in three upper indices is known already 

(from the work onA 02) to be a 12: 

If the antisymmetric combinations of upper indices are isolated, 

ij 
wMm ’ ekij vPm 

when made symmetric in the three lower indices exactly as above, the 10* - 

results - (ilO.s)+)jkp. Note that V.‘j 
li 

= 0 and V fj = 0, because the octets are 
kJ 

traceless. However, another tensor can be formed by contracting an upper 

and a lower index, Vky. This will represent an octet if the trace is removed 

in the usual way 

j- ij 1 j ie 
021k = Vki - T hk (VQil. 

A second octet can be formed by contracting the two other indices. 

m2); z v.lJ 
JQ 

- f 6;ivkt) 

One often changes the basis somewhat by defining the following sym- 

metric and antisymmetric octets : 

8s = 8$ + 82 and 8A = 8i - 82. 

So far 63 of the 64 states have been detailed. The singlet that remains 

is just the trace that we have been removing above. 
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(,&, E v.?. 
J1 

This completes the reduction ofj@8+. Explicitly 

i j 
Tk TQ = A,,(2& ” t A 10tkPm(~)mij + Aio:+ijm(@)mkl 

+A 
8S 

+A 
i j j 

6Q (jA)k 
i 

-6k(,$A)Q +Ai 1 [ ij 1 i j 

8A 
6Q6k-~6k~Q 1 cu. 

(Exercise: Work out the values of the coefficients Ar. ) 

As an example, consider the strong, SU3 invariant decay of a vector 

meson into two pseudoscalars, e. g. , p - 27~. Now a vector cannot couple to 

both of the octets?S and sA, Again, this is due to the Pauli principle. The 

two pions from the decay have to be in a state of total angular momentum 1. 

Since they are spinless, this requires their space wave function to be the 

antisymmetric Q = 1 state. To maintain Bose statistics, the SU3 part must 

also be antisymmetric. If we call the vectors vf and the pseudoscalars Pf, 

then the proper invariant coupling is simply proportional to 

V.‘(S ,! 
J +Al' 

where u41i - k 1 J = p jp,k - PikPkj. If you will write this out, you will find all the 

Clebsch-Gordon coefficients for ,882 - 8-. The identification with physical 

states requires taking into account the nonet structure, i. e. , mixing between 

the octet and singlet. We leave this as an exercise. 

This concludes our review of SU3. The subjects and examples treated 

have been chosen with a view toward later applications. As you will see, 

we will need most of the machinery developed so far. Now that we are 
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warmed up, let’s take on one more quark. (For those interested, 1 append 

-. a discussion of mass splitting. ) 
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APPENDIX TO CHAPTER II 

Mass Splitting 

It is commonly supposed that the fundamental interaction between 

quarks (say, via gluons) is SU3 invariant and that the source of the observed 

violations of SU3 invariance is due to the strange quark s being intrinsically 

heavier than the isodoublet u and d. In a quark Lagrangian, the mass term 

would look like 

M = m,(ilu+;id) + ms(%) 

= m( $i$i) + Am [$3$3 - f( $i$i) 1 

2 
where m = - m 

1 
3 0 3 

+ - ms is the average mass and Am = m -m 
S 0 is the mass 

splitting of the strange quark. 

More abstractly, 

M = m(_?) + Arn(3:, 

3 
that is, the mass term transforms as the sum of an SU3 singlet plus the 3 

component of an octet. Now imagine calculating the first order correction 

to the mass matrix, perturbing in Arn(3:. The general form of this 

correction for an arbitrary multiplet is called the Cell-Mann-Okubo formula, 

whose derivation will be discussed below. For many cases, one can obtain 

mass relations simply by observing that M can also be written as 

M=A+B(U3+;Q) 
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where U 3 
is the third component of U-spin and Q is the charge operator. 

Consequently, within a given U-spin multiplet, there is an equal splitting 

between adjacent states. For example, in the decuplet, (rZ-, E”-, Y*-, A-) 

form a U = 3/Z multiplet. The above observation tells us that 

M(R-)-M(-“)-M(-‘)-M(Y“‘)=M(Y’)-M(A). 

Similarly, for the baryon octet, (so, ZUo, n) form a U = 1 multiplet, where 

~ o- 6 u=+b;S”. Hence, M(N) - M(Cuo) = M(xuo) - M(E’) 

Or &[M(N) + M(5’)] = M(Zuo) = + [3M(A) + M(C’)]. For mesons, for 

some reason, the formulas work much better if you use mass-squared. For 

the pseudoscalar octet, the corresponding relation would be 

M(K)2 = + [3M(n )2 + MW2]. 

[K and E have same mass.] 

SO, for most cases of interest, nothing more than a knowledge of SU2 

is required. However, let us, consider the general problem of finding the 

general form of 

< T$::;m:” / (8J 1 <!f,y~>, 

where T. 1 ii:::)&+ represent the states of an irreducible representation 

of dimension D m - z(m+l) (n+l) (m+n+Z). This is just some linear com- 

bination of zmn @ D na which transforms like an octet. 
-m 

There are clearly 

only two possible ways to pick out octets from the product 
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i . ..i i '. ..i t 

( i 

* 

T.’ n T.f n 
J1...jm ~lt~~~jmt 

, viz, 

il ili2”-in 
‘Jl)i ,-ST. 

;,: jl..jrn 
CT’). ,. 

il 

1 ~~~ .jrn l1 12’ * in - f 6. 
‘1 

, (21, and 

1 .i 
(52);’ E Ti’: n 

j,‘j,. jm 

1 3132’ . jm (T”) 
j,’ 

1 . ..i - f bj (11, 
1 n I4 

i ..i 
where ‘f! = T.l 

jl...jrn 
? (T”). 

Jl”‘J, 1 . ..i 
1 n 

As usual, it is frequently more convenient to work with the symmetric 

and antisymmetric combinations 

& = & +,& andiA = .& -A-. 

The general form of the mass splitting is therefore 

AM = A(jA); + S(& 

with A and S arbitrary constants. There are two exceptions to this general 

form. ( 1) If the particle multiplet is triangular, i. e., has only uPPer or 

only lower indices, then we can form only one such octet. For example, 

for the 3 /2+ decuplet ( 2) 
ijk 

, only 31 can be defined. (2) If the particle 

multinlet is self-conjugate (i. e. , contains both particle and antiparticle), 

then A = 0. This is again a consequence of the Generalized Pauli principle. 

This occurs for all meson multiplets.~ In each of these two exceptional cases, 

the mass splitting will depend on only a single parameter, so the results 

obtained above on the basis of U-spin are completely general. 
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The above form, although correct and simple to derive, is not so 

transparent as another formulation. The point is that particle states are 

more conveniently labeled by their eigenvalues of hypercharge Y, isospin I, 

and the third component of isospin I3 or charge. (Since the strong inter- 

actions are isospin invariant, the mass is independent of 13. ) We would like 

to obtain a form which expresses AM directly in terms of Y and I. Unfor- 

tunately, I know of no simple way to convert the formula above for AM into 

an expression involving Y and I. (Here’s a good homework problem! ) The 

simplest way I know is to use the Wigner-Eckart theorem to say that matrix 

3 
elements of(z), are proportional to the two independent operators having 

this transformation property which can be formed from the generators. 

Instead of numbering the generators Gi, (i = 1, . . .8), we define an alternative 

representation of the 8 generators AL (j, k = 1,2, 3) with Ai = 0. In the 

fundamental representation, these generators are defined to have matrix 

elements 

(A;lmn = Jm 6. 6 kn - $ 6jk6mn. 

(Exercise: Work out the correspondence between the AL and the 8 Gi. ) 

Then in addition to the octet A;, we can define another octet 

,j = {A! Ai ) 
k 1’ k - $ 6i (A;A;). 

Then the mass formula reads 

M=MO+M1<A;>+ M2+;>. 
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2 
It is easy to show that A: =Y and Dz ~1 

-+2 
- % + constant. Thus we arrive 

-- 
at the Cell-Mann-Okubo formula, so that AM = aY + b [I( 1+1) - $Y2]. 

For mesons, a = 0 by C invariance. 

For triangular representation, I = 1 + $ Y, so that AMuY. 

For further discussion of mass splitting, see the book by Carruthers 

and references therein. 
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CHAPTER III: IXTRODUCTION TO SU4 

SU4 - Fundamental Representation 

SU4 is defined as that special group of unitary 4 by 4 matrices with 

determinant +i. The new degree of freedom will be associated with the 

charmed quark. Before writing down the fundamental representation, a 

slight variation of notation will be explained. Instead of using indices 1 

through 4 to label the 4 degrees of freedom, the charmed quark will be 

assigned the index 0. This is for convenience later on when the up quark 

and charmed quark will be grouped together as a doublet of objects with the 

same charge. 

The fundamental representation, 5, of SU4 will be denoted by 

0 

3 c 

qJE2 q 1 . 
0 0 z3 S 

We proceed in the by-now familiar way. An infinitesimal transformation is 

of the form 

U(C) = 1 + iz-. E. 

The generators, 2, are still hermitian and traceless, but now, of course, 

they are 4 by 4 matrices. There are 15 such matrices, only 3 of which can 

be simultaneously diagonal. 

Define Gi = $ Xi. In order to retain the isospin and unitarity spin sub- 

groups, the first 8 generators are chosen identical to those of SU3. Just as 

for SU3, the remaining nondiagonal matrices, which are necessary to allow 

transformations mixing charm with the other 3 kinds of quarks, are chosen 
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in imitation of the nondiagonal Pau~li matrices. The last, diagonal, 

.- generator is chosen in such a way that it is a multiple of the identity, so far 

as SU3 is concerned, while distinguishing charmed and uncharmed quarks. 

0 1 
x9= (-il I O 0 

00 

x11= H-1 0:: 0 1 
0 0 0 

0 1 

0 0 

%3= 

0 

i+ 

0 0 
1 0 0 

A. = 
1 

i =I,8 

-i 0 

‘12= 0 0 H-1 i0 0 

0 0 0 

0 -i 

0 0 0 
:oo (t i 0 0 

-3 0 

%5=& i-l-1 O* 0 10 

0 0 1 

In my numbering I follow the convention used in D. Amati, H. Bacry, 

J. Nuyts, and J. Prentki, Nuovo Cimento 34, 1732 (1964). In this paper - 

you will find many useful mathematical properties of SU4 presented in a form 

convenient for reference. In an appendix to this chapter, I reproduce the 

most useful tables. 
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These generators satisfy the following algebra 

[ 1 
xi A. 

-L = if.. 
“k 

7, 2 1jk-Z’ 

where the f.. 
I# 

are simple constants that can be worked out if needed. 

Charm can be defined as the eigenvalues of 

c =$(i -VT Xi5) = 
i ) 

iO o. 

So charm is not a generator of SU4. * With this definition of charm, the 

charge operator is 

to make charge of 
c equal charge of u. 

Charge is not a generator of SU4 either. It is possible to make other charge 

assignments, but we shall follow the lepton-hadron analogy of Bjorken- 

Glashow -1liopoulous -Maiani. 

The fundamental representation may be pictured as a tetrahedron: 

C 

C 

t 

Y 

13 .A u’ 

The axes for the horizontal plane are our old friends I3 and Y. The vertical 

axis is charm C. The four faces of the tetrahedron obviously form 4 SU3 

subgroups. The most familiar is, of course, the one formed from (u, d,s). 

Under this SU3. the charmed quark c is a singlet. 

* 
The inclusion of the unit matrix 1 enlarges the group to U4. 
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Conjugate Representation 

The conjugate representation, 2”, is defined in the usual way with 

generators -G*. As in SU3, since the eigenvalues of -G” are different from 

those of +G, these turn out to be independent representations. 

Products of Representations 

As usual, only three invariant tensors exist in SU4. These are the 

completely antisymmetric symbols and the Kronecker delta symbol. 

E”PFa 

= <4Po. and 6 P 
a 

a,P,p,o= 0,*,2,3. 

Now consider the product 2 @ 2. One representation is (J”+‘. The 

irreducible representations are found by picking out the permutation sym- 

metries of the indices. 

10 6 

These should not be confused with SU3 representations of the same dimension. 

Similarly the product 4+* @ $* can be reduced as follows 
. 

( 4&y”@ - $#J I 
“transforms like” 

topp4Jp4Ja 

(This illustrates the utility of the tensor notation. ) Consequently, kand c 

are equivalent representations. 

At this point it is appropriate to point out an important way in which 

SU4 differs from both SUz and SU3. In both SU2 and SU3 the judicious 
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application of the epsilon symbol can reduce any tensor with a pair of anti- 

symmetric indices to a tensor of lower rank. This fact leads to the theorem 

that the most general irreducible representation in either SU2 or SU3 is a traceless 

tensor completely symmetric in all its upper and lower indices. In SU4 the 

epsilon symbol can only exchange a pair of antisymmetric upper (lower) 

indices for a pair of antisymmetric lower (upper) indices. Therefore, the 

most general irreducible representation in SU4 can possess a mixed sym- 

metry. 

For many purposes, this doesn’t make the tensor notation any less 

useful. For example. 

$,+@ is a singlet 

c~pp~p~puo z qa. and 

E ,Ppo+~J+p+O is a singlet. 

SU, Subgroups of Definite Charm 

Identification of those SU3 subgroups having unique charm eigenvalues 

parallels the reduction performed earlier on SU3 into SU2 subgroups. 

Although these are fancier ways, the simplest is to count the number of 

charmed quarks. 

For example, the fundamental representation, 2, JI” splits into an SU3 

triplet2 +i (i = 1,2,3) with charm zero and a singlet & 4’ with charm C = +i. 

Similarly, we may decompose (90’ 43 = {+“, ~$3) as follows 



None Zero (s)” 

One Zero (2Joi 

Two Zero (21 
00 

Similarly, for (2) 4 = [4LJPl: 

None Zero (6)ij 

Oi 
One Zero (2 

Regular Representation JJ 
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SU3 Representation 
Charm C 

6 0 

3 +1 

+2 

3 * d 

3 +1 
ry 

In the by-now-familiar way, the regular representation is defined from 

the structure constants 

(Fk)ij= -ifijk i,j,k =1,2, . . . ,15. 

As usual, one can establish the isomorphism 

Fk z t T Ak$ _= $ +,(Ak),$3. 

SU4 Mesons 

Mesons correspond as usual to quark-antiquark pairs. Consider 

20 4*. The reduction is essentially identical to the reduction of2 @ &* 

in SU3. 

As indicated previously, these i$ transform like the regular representation. 

Now write out the states. 
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(15)31 = us K’ 

(15)32 = ds K0 

(i5)2i = u;i 
+ 

1T 

Wi2 = dii TT 

(WI3 = su K- 

(15)23 = s;i K” 

(1510i =uc 

(15i02 = dc 

(i5)03 = SC 

(4 - = cu 

(15); = c;i 

(4 = cs 

D” 

D- 

F- 

DO 

D’ 

Ff 

(1 5)ii = ;u; - a(dx+ s;+ c;) 

(15)22 
3 - 1 

= ,-dd - ,(u,+ SF+ c:) 
not all independent since the 

(i5)33 = is, - ;(ui+ d;i+ c:) 
trace (their sum) must be zero. 

(4 = SC, - $I;+ dd+ s:) 

The physical combinations can only be identified by appealing to SU2 

and SU3. The v” and n have already been identified as 

lT (uii - d;i) a (15),1- (i5)22 

II uti+ d;i -2~s) = (15)ii+(15)22 -(15),3 

The remaining state is now fixed to be orthogonal to these two and to the singlet 

o15= & (UT+ da+ s.? - 3cF)= (15)’ 
0 . 

In addition to these 15 states, there is the SU4 singlet 4.- 

2( 
ql 2 uii+ da+ sS+ CT). 
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Except for the TI’, required to have the form above by isospin symmetry, 

the mixtures of n, ni5, and nt which correspond to physical states depends 

in detail on the way SU4 is broken. We might still imagine that it is broken 

in a way which approximately preserves SU3, which would suggest that n is 

as given above, and the remaining two states are apt to be 

0’ = X0 = -&(u;+ d;i+ SF) 

r& = cc. 

One can essentially read off the SU3 subgroups from our list of par- 

titles, but it is useful to proceed systematically to identify them as we did 

before for 4. 6, and 2. c ,4 

None Zero ( 

One Zero 

Two Zero 

SU3 Content 
C 

9,; 2+ 1 0 v 

pol 3 +1 

15): 3” -1 
dl 

12,; 1 0 
c ( 

We appear to have identified 16 states but the SU3 singlet formed from’none 

zero”is not independent of the singlet with two zeros since (15) Ly = 0. To see a 

this explicitly, observe that 

(Exercise: Verify this. ) 

Of course, the SU4 singlet state remains a singlet under SU3. The 16 

states can be displayed on a three dimensional weight diagram: 
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cii=F+ 

sE=F- 
This figure, as well as the names for the charmed mesons, 

has been taken from a ,paper by M. K. Gaillard, B. W. Lee and 

J. Rosner, “Search for Charm, ” FERMILAB-Pub-74/86-THY, August 1974, 

and “Addendum, ” FERMILAB-Pub-75114 -THY, January, 1975 (both to be pub- 

lished in Rev. Mod. Phys., April 1975). The first of the two preprints was 

written shortly before the discovery of the resonances at 3.1 and 3.7 GeV. 

The basic phenomenology of charmed particles is covered thoroughly and 

this is as good a time as any to recommend it to you. In many ways, these 

lectures are but a prelude to their discussion. Hereafter, we shall refer 

to them as GLR. For more about qc, see B. W. Lee and C. Quigg, 

FERMILAB-74/ iiO-THY, December 1974. 
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Of course, we can anticipate SU4 multiplets of mesons at higher mass. 

The identification of the above 16 states with the pseudoscalar mesons 

assumes that the total angular momentum of the quark-antiquark system is 

zero. In the nonrelativistic quark model, this is identified with no orbital 

excitation (L = 0) and a coupling of spins to zero (S = 0). If, instead, the 

spins couple to one, we obtain a vector meson multiplet. Consequently, in 

addition to the usual nonet consisting of the K”, p, w, 6, we add seven other 

particles called naturally, D*, F*, and $I = cc. It is this last state which c 

has been identified with the lowest narrow resonance at 3.1 GeV discovered 

at SPEAR (where it was called 4) and at BNL (where it was called J). This 

gives us a rough idea how much heavier the charmed quark must be. For 

further discussion of the consequences of this interpretation, see GLR 

(especially the Addendum) and any recent issue of Phys. Rev. Letters. 

SU4 Baryons 

The baryons transform as 3 quarks so we must considerzg 4 @A. 

There are 64 independent states here, all with the general structure $“$+‘. 

Part of the reduction has already been discussed. 

~QOQ~=((1_oO~)Q~=l~Q~~~Q~ 

Consider the 40 states in 2 X 4- first. The lz was shown to be sym- 

metric in its two indices. 

c?_aP = $ffQ + L) p = 14J”,liiP>. qJa 
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The representations contained in 2 @ 4 must respect this symmetry. One 

.- irreducible representation is easy to write down--the completely symmetric 

one, 

‘2 ) 4% E ~~+~~Y + q&Q)” + *Y&P 

+ *QJ”Q + &J$ + &J~+a. 

As indicated, this representation has dimension 20. (Exercise: show this. ) 

A second tensor can be formed using the epsilon symbol 

w;,,; E EpoPy QJ”, 47 +y. 

This expression is traceless as it stands. It forms a 20 dimensional repre- 

sentation of mixed symmetry. (The subscript S reminds us that it is sym- 

metric in the first two quarks. ) 

The only other tensor which might be considered, 

EpapyM. 43 4Jy, 

is obviously identically zero. This is nice because the 40 states have 

already been accounted for 

1002 = z + 20;. 

Now consider2 @ 4. Recall that2 is antisymmetric in its indices 

(6@ = c - dv - P+a = [qa> J]. 

We consider the decomposition of [$Q, ~P]~y. One possibility is the totally 

antisymmetric combination 

As indicated, it obviously transforms as 2*. 
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Once more there is only one other tensor that can be constructed 

(~.~),~ g ~~~~~ [4~@, +J~I+~ - (traces) 

This exhausts the 24 states of,j@$;. (Exercise: Work out the (traces) terms. ) 

In summary, 

4@4@3=22+,20;+28;+4”. 
..I 

SU3 Subgroups of Baryon Multiplets 

The simplest way to visualize the SU4 baryons involves detailing the 

SU3 subgroups. Consider the totally symmetric 0: 

(ayY. 

Proceeding as we did with, 2, g. and z5, we make a little table: 

None Zero (E)ijk 

One Zero (Z,Oij 

Two Zero cg 
OOi 

SU3 Content 
C 

10 0 

6 +1 

3 +2 N 

Three Zero (2) 
000 

2 +3 

(Check: 10 + 6 + 3 + 1 = 20. ) We recognize the C = 0 subgroup as the 

familiar ( 3 / 2)+ decuplet. 

The SU3 baryon octet must be contained in the two 2’s of mixed sym- 

metry. As before, where Fermi statistics is imposed on the total wave- 

function, the 40 states which result are not all allowed. Only twenty states 

can be formed (for each value of angular momentum) consistent with the 

Pauli principle 
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In any case, the 20 allowed states will be built from 20s’ and 20 ’ 
-A com- 

bined with spin in such a way to form a symmetric product of spin x SU4. 

So let us analyze the SU3 content of (2’) (y z E 
P” 

poPy +(y*P~y - (traces). We 

proceed as before to set various indices to zero. 

Consider (21-J’)yj (i,j = 1,2,3). Because we have required p and o non- 

zero, either p or y must be zero. Since (Y = 0, these states contain two 

charmed quarks and one uncharmed quark. Multiplying by E 
kij 

, we recall 

that in SU3 states antisymmetric in two lower indices transform like a tensor 

with a single upper index. Thus, these form an SU3 triplet2 of charm +2. 

c[c, dl C[C,U] _ xd+ x,++ 

c[c,s] x,+ ’ 

where we have indicated the names given in GLR. We see an isodoublet and 

isosinglet here. 

Next consider 

(g’ ii = +O Eijk +jJlk. 

This obviously transforms as 3” and, containing a single charmed quark, 

has C = +I. 

cg, ii : c[u, dl C,’ 
c[d,s] c[u, Sl SAO A’ 

Again, we see a non-strange isosinglet C : and an isodoublet A’, A0 with 

Y =o. 

Another subgroup with C = +1 is formed from (zl).k. 
Ll 

With 3 upper 

indices and 3 independent lower indices, we appear to have 9 states. How- 

ever, the trace condition on 7.0’ reads 
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‘~l’i. + (q$ = 0, 

so only six of the nine states are new, the remaining ones forming 3’. They 

are 

cdd c{u, d) cuu c 1 O Cl’ cl++ 

cts,d) c{s,u} = so s+ 

css To 

Those states whose quark content is the same as those in 3* above have 

been chosen orthogonally. Thus we choose symmetric combinations of {u,d}, 

{s,d) > and {s .u) Obviously, we obtain a nonstrange isovector Cl, an 

isodoublet S with Y = 0, and an isosinglet To with Y = -1. 

So far, we have identified 2 +L* t A.= 12 states. It will come as no 

surprise that the remaining eight states with C = 0 are the familiar baryon 

act et. They come from (2’) k. 
01 

[There appear to be nine states here, but, 

because ‘~‘)o~ = 0, only eight are independent. ] 

These states may also be represented on a three-dimensional weight 

diagram, which we take from GLR: 
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In the product of2 @ & @ 5, there also occurs a set of four, states 

transforming as A*. This representation is totally antisymmetric in the 

3 quarks. To realize a physical baryon, we must combine this with a totally 

antisymmetric spin state so that the wave function would be symmetric in 

SU4 X spin. However, there doesnat exist a totally antisymmetric spin state 

formed from three spin i particles, so, once again, the Pauli principle 

excludes 4* as a candidate for physical baryons. 

For those interested in mass formulas, I recommend GLR for a discussion 

on what we can expect from first-order SU4 breaking. It is questionable how 

valid a first-order perturbative calculation will be since SU4 is so much 

more badly broken than is SU3. However, until we obtain experimental 

input, we can do no better. Although our expectations for the masses of the 

charmed baryons and mesons may turn out to be incorrect, the existence of 

states with the quantum numbers given above is the crucial test of the whole 

scheme. Some simple conclusions can be drawn from the SPEAR data which 

fixes the mass range of the lightest charmed mesons, presumably the D*, 

DO, and 3. In addition to the resonance at 3.1 GeV, another very narrow 

resonance has been observed at 3.7 GeV, which is interpreted in this charm 

scheme as a “radial” excitation of the c-Fppair. Because it is so narrow, 

its decay into say D+D- must be kinematically forbidden. Consequently, we 

expect mD > i .85 GeV. However, another bump in e-e+ annihilation has 

been observed at 4.15 GeV, which may be a second radial excitation. 

Regardless, it is quite broad suggesting that it may be above the threshold 

for decay into pairs of charmed mesons. Consequently, we would expect 
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mD 
< 2.07 GeV. Thus, the D meson probably lies in the range (1.85, 2.07). 

. . As we shall see, the lightest charmed particles are expected to decay weakly, 

indeed, this will be the true signature of a new quantum number which is 

conserved by strong and electromagnetic interactions. We shall discuss 

later into which channels they will decay. 
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APPENDIX TO CHAPTER III 

Appendix from D. Amati, H. Bacry, J. Nuyts and J. Prentki, Nuovo 
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IV. XI4 STRUCTURE OF ELECTROMAGNETIC AND WEAK CURRENTS 

Now we shall turn to a discussion of how the charmed quark enters the 

electromagnetic and weak currents. First, we shall briefly indicate what 

the currents are expected to look like and what the weak decays of the lightest 

charmed particles will be. Later, we shall discuss the implications of this 

scheme for deep inelastic lepton scattering. 

Structure of the Electromagnetic Current 

The current is 

JP = ..I CY 
eu FY~+~, 

where ea is the charge of the corresponding quark field. Ignoring the space- 

time structure, this takes the form in our scheme 

J = + + i?u) - +d + B-s), 

where we have suppressed the electronic charge e. 

Just as in SU3, GUparity prohibited the transition 

y +K’;f, 

so, in SU4, an SUz subgroup P = 
0 
E and a GI,-parity operator can be defined 

to suppress the transition 

y % DOD”. 

How well the selection rule on K”s works is not known. I suspect 

that SU4 is so badly broken that the Doll channel may not be suppressed at 

all. certainly not until energies large compared to threshold. 
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Structure of the Weak Current 

The purely leptonic part of the (charged) weak current is of the form 

J 
weak - - 

leptonic 
= (v 

- - 
= “ee +vp. 

P 

[The very important factors of y (1 -v,) associated with the space-time 
P 

structure of the current have been suppressed here. ] We have two doublets 

of particles with the same charge connected via the unit matrix. The unit 

matrix summarizes the experimental observations of p-e universality. 

The hadrons also participate in the weak interaction. The proposal 

here is that the hadronic part of the weak current can be written in a very 

similar way if quarks with the same charge are paired in doublets. 

J hadrJntt = (CL3 u(Z). 

If SU4 symmetry were exact, we would wish to be able to choose a new 

basis +’ = V$ (for some unitary V) so that in the transformed basis, the 

hadronic current would be identical to the lepton current, i. e., in4 x 4 language, 

q-F++ =(jq 
This implies that U is a unitary 2 x 2 matrix. Now imagine that we were 

dealing with a field theory in which the only SU4 breaking of strong inter - 

actions were due to the different quark masses carried by the strange and 

charmed quarks. Then one cannot rotate the basis (except within the iso- 

spin subgroup) without destroying the diagonality of the mass matrix. 
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However, one can still alter the phases of the fields and this, we will now 

show, is sufficient to reduce U to dependence on a single parameter. 

To see this, consider that the most general 2 x 2 unitary matrix can 

be written as 

a 
u zel* 

P 

( 1 
+” a* ’ 

where A is some real phase and the complex numbers (I and p satisfy 

Icu/2 + jpf = i. Suppose we define new [primed) fields, differing from the 

original ones by a phase 

(L)=eiriey e:i+)(; j (“)=eiAi’:’ Pi+)(I)‘. 

In terms of these new fields, the current assumes the form 

J =ei(A+ A-l?) 

where L~I = ae’(’ -*) and fj’ = pei(‘+‘). Clearly, we now have the freedom to 

remove all relative phases and reduce J to a function of a single parameter. 

To bring this expression above into conventional form, choose 6 and 4 to 

make o t and pi purely imaginary and then choose A - l? to make the overall 

matrix real. Since la12+ jpl2 = 1, we may define cos Bc = ISI, sin sc= (a (. 

Then the hadronic current becomes 

-1 

I 
-, -sin 0 

JH 
= c if C cos % d 

cos e C sin 8 )i 1. c s 

The sole remaining parameter sc is called the Cabibbo angle. Hereafter, 
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,, ‘.‘~. 

~~ 
~._ _- ~‘: 

ecu . . 

we will drop the primes and assume that the fields are definea so that 3 takes 

.- this simple form. The upshot of this exercise was that, without loss of 

generality, we may assume that U is a real, orthogonal matrix. (The pre- 

ceding discussion follows the argument of Glashow, Iliopoulous, and Maiani, 

2. @&. ) In this context, the Cabibbo angle arises rather naturally. Why it 

2 
assumes the value observed (tan 6 

C = 0. 056) is unexplained. Whether it 

can somehow be related to the direction and magnitude of SU4 breaking 

remains an outstanding question. 

We assume the full weak current is the sum of the leptonic and hadronic 

pieces 

J =JL+ JH. 

That we add these without further normalization constants expresses what 

we mean by lepton-hadron universality. 

We imagine that this current couples in the Lagrangian to a charged 

weak boson, i. e. , the interaction is of the form J P t W f w’lJt 
P P’ 

(For the 

discussion which follows, the W boson is inessential, although convenient, 

and we could equally well speak of an effective current-current interaction. 

In renormalizable gauge theories, however, the vector boson plays an 

essential role. ) 

Leptonic vertices : 

/t.l.+-- /c;or Alor A- P I-I P+ P Y 
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That is, we imagine we are dealing with a CP invariant, local theory so that 

all these vertices are allowed and equal. Henceforth, we shall draw only 

one, and you can infer the rest. We have similar diagrams for the electron 

with equal strength (p-e universality). 

Hadronic Vertices and Semi-Leptonic Decays 

We will now draw the allowed vertices involving the quarks underlying 

the hadrons. Consider first 

1. The u-d vertex 

cos I3 

d 

This vertex appears, for example, in p decay of the neutron, n 4 pe-7 
e’ 

which results from reconversion of W- into an electron-neutrino pair. 

Suppose, as with p decay, the d quark were a member of an initial bound 

state and, following W emission, the u quark is taken up by the final state, 

that is ,we consider W < f 1: d cos Bc 1 i,>. How will the quantum numbers of 

the hadronic state have changed in going from Ii > to ( f > ? Clearly, the 

transition changes neither charm nor strangeness, AC = AS = 0. What about 

isospin? Since the initial quark and final quark both have I = $. when com- 

bined with the remaining quarks, the maximum change of ,isospin can be one. 

Consequently, only AI = 0, I are allowed. In summary, semileptonic 

decays of this type fulfill the selection rules AC = AS = 0, AI = 0,1. Another 

important transition of this type is pi- * p r . 
P 
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Were there no renormalizations due to strong interactions, the coupling 

for this vertex would be just cos Bc times the leptonic vertex. (Current con- 

servation implies that the conserved isovector current is not renormalized. 

However, the axial vector current is not conserved, and its coupling is 

changed by strong interactions. ) 

2. The s-u vertex 

Semi-Leptonic Selection Rules 

sin e 
AC= 0 
AS = -1 
AI =$ *Q = AS 

S 

This strangeness -changing vertex is responsible for decays such as 

K- -+ p-3. 
P 

For semileptonic decays, generally, there is no change in 

charm; the strangeness increases by one as does the charge of the hadronic 

system (the famous AS = AQ rule); the s quark is an isosinglet, while u is 

a member of an isodoublet, so isospin can change by i. If SU3 were exact, 

then the ratio T(K- + p-7 )/I?(TT- - p-v ) would be just tan’ 8 = 0.06. 
P )I c 

3. The c-s vertex 

W+ 

CDS e 
C 

1 ?: 

AS =i 

Semi-Leptonic Selection Rules 

AC = 1 

AI =0 
AQ = AS = AC 

c S 

This vertex would be responsible for Ff - pfv 
P’ 

for example. In this theory, 

the Cabibbo-favored transition is from a charmed quark to a strange quark, 

Again we list the semi-leptonic selection rules. 
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4. The c-d vertex 

Semi-Leptonic Selection Rules 

AC = 1 
AS = 0 
AI =+ 
AQ = AC 

This vertex would be responsible for the decay D+ - P+“Y 
I”’ 

This transition 

is Cabibbo-suppressed for charm-changing decays. Note once again the 

semi -1eptonic selection rules, 

Leptonic Decays 

With only a few assumptions we can estimate the decay rates of the 

charmed hadrons. Assume that all matrix elements are SU4 symmetric, 

but acknowledge the large SU4 symmetry breaking by using the physical 

masses in the phase space calculations as usual. This will give us some 

ball park estimates of the rates. 

Two-Body Decays 

The K+ is a US system. Its two-body decay can be pictured 

s”>%‘I Z Tsin8C 

P 

This is the K2 amplitude. 
P 

The phase space factor for the decay into a 

muon and neutrino is just (see, e. g. , Bjorken and Drell, vol. 1) 

phase space factor = (constant) M 1 - 2 
L ( rl 

, 

where M is mass of the meson and m is the muon mass. For mesons with 
P 

the kaon mass or heavier, the factor in square brackets is within 5% of unity. 
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Therefore, 

phase space factor = (constants) M 

will be used here. The partial width for the K 
lJ.7. 

decay, then, is 

rK 21J. a 1 T 1’ MK sin’ OC. 

The rates for the charmed mesons are now easy to write down. The D+ 

is a cd system. Its two-body decay is 

k 

rD = ITI2 
2P 

MD sin’6C. 

The decay of the F+, a cssystem, is not Cabibbo suppressed 

MF cos’ BC 

In summary 

MD MF 
rK2: rD2: rF2 = i : lVIK : - 

MK 
cot2 e c 

Approximating MD = MF = 2 GeV, MK = i GeV, and cot’ BC = 20, results in 

rK2: rD 
2 

: rF =I : 4 : 80. 
2 

Since rK 
8 -1 is 0.5x10 set , one expects these two body, leptonic decays to 

2 
have partial widths 

rD 
-1 

-2~10~ set and TF -4x109 set . -1 

2 



-72- 

Semi-Leptonic Three-Body Decays - 

. . The diagrams for semi-leptonic decay into three-body final states 

feature one quark line which does not participate directly in the weak inter- 

action. The K3 decay, K” + n- 1 + v, is represented by the diagram 

d- 

c- 

d 
K- C 

-I - 
TT 

S u 

P+ 
E T sin OC. 

The phase space factor associated with a three-body final state is quite 

complicated in all its fine details. However, if the energy released in the 

decay is much larger than the masses of the final-state particles, one has 

the rule, 

phase space factor 0: (energy releasej5. 

For heavy particles this is well approximated by the mass of the parent 

particle (see Bjorken and Drell, Vol. 1). 

5 
phase space factor = (Mass) . 

The partial width for K 
13 

is of the form 

rK 
I3 

= MK5 sin2BClT12. 

The decay of the D’ can be treated in exactly the same way 
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so 

. . 

rD+ 3 
a MD5 COS~BC~T~~ 

The lack of Cabibbo suppression, together with the large increase in 

phase space, greatly enhances this decay mode 

cot2 e 
c 

z (415 20 F 2x104. 

Since rK 
6 -1 

is approximately 6 x 10 set , the three-body partial width is of 
3 

the order 

-1 

rD3 
- lOI1 set 

This is much larger than our estimate for the two-body leptonic rates, by 

a factor of 500. 

Another interesting example along this line is the Fil decay. 

F+ 
1 

S s 
cos e C 

‘; 1 
r), x0 or d 

C 

ox \ 

S 

w>t+ 

Y 

The sS final state is not an unique physical state. Of the three known pseudo- 

scalar mesons with these quantum numbers, only the n and n I have s s 

components. In fact, one can combine these to find 

s+&qL 
J” 3 0. 

This gives the prediction 



. . 

Again, since this reaction is not Cabibbo suppressed, these rates should be 

comparable to rD 3 times (mF/mD)5, which might not be too large a factor. 

Another interesting mode of this type is F+ - &. This would have a rather 

distinctive signature, but, as we shall see, these branching ratios are probably 

quite small (less than 1%). 
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V. NON-LEPTONIC DECAYS 

In the preceding chapter, we have discussed the basic weak interaction 

vertices of quarks and applied them to leptonic and semi-leptonic decays. Now 

we shall turn to the non-leptonic case, which is more complicated, but also 

probably more important for charmed particles. The prototype for these 

processes can be expressed as before, in terms of quark diagrams. 

Non-Leptonic Decays 

It is easy to draw figures representing nonleptonic decays - just put 

together any two quark vertices. There are four possibilities for the charmed 

quark: 

amplitude PI cos’e 
C 

w+ 

k 

U 

sin ec 

s 

= cos e 
c 

sinec 



-76- 

d 

Y + 
-7W 

cL3e c 7 
u 0: - cOsecsinec 

C 

c-U a -sln2ec 

s 
These diagrams represent what one would call the nonleptonic decay of a charmed 

quark. They do not represent physical processes. 

One can apply these ideas to charm-changing decays. For example, 

GLR have given the following estimate for the non-leptonic decay rate of a 

charmed particle. As is currently popular, suppose we imagine that a meson 

looks like a quark-antiquark pair inside a bag. (A bag is a region of space inside of 

which the quarks are confined.) The non-leptonic decay of the meson may be 

viewed as the decay of the charmed quark via one of the processes above. The 

quarks so produced rearrange themselves to form final states of various kinds. 

(We may also have to allow for creation of other quark-antiquark pairs.) If, 

in the region inside the bag, the quarks act as if they were nearly free particles 

in a potential well, then perhaps the total decay rate is of the same order as the 
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primary process c - sud. Let’s calculate this rate. It is easily done, assuming 

the charmed quark is much heavier than the non-charmed quarks. Then, by 

lepton-hadron universality, the amplitude for c - sud is simply cos’e c times 

the leptonic amplitude p- - vpe-<. Consequently, the decay rates are simply 

related by scaling the phase space, i.e., 

m 5 
r(c-sui) = $ 

i i 

c0s4ec r+-evv) 
P 

If we take mc s 1.5 GeV, then we find 

r(c-sud) * 3 x 10” see-i . 

As expected, this is of the same order as the three-body, semileptonic rates 

estimated earlier. As we shall argue below, some non-leptonic rates are likely 

to be larger than this estimate by perhaps a factor of five or more. If SO. 

then non-leptonic decays will dominate the branching ratios of charmed particles, 

with samileptonic decays contributing less than 10%. 

To understand the basis for the expected enhancement of certain non- 

leptonic decays, we must refresh our memories about the phenomenology of 

strangeness-changing decays, where the enhancement is called “The AI = + Rule’! 

I shall not review all the evidence for the AI = $ rule, but refer you to the 

excellent recent review by M. K. Gaillard, “Non-Leptonic Decays” in 

“Textbook on Elementary Particle Physics (M. Nikolic, ed., ), to be published. 

As we’ll review below, w.e expect the strangeness- changing 

decays to also change isospin,by i/2 or 312. Typically, however, the 

AI = 3/ 2 amplitude is only 5% or so of the AI = i/ 2 amplitude. The question 
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arises whether this is because the AI = + amplitude is in some sense larger 

than expected or whether AI = 3/Z is strongly suppressed. It seems that both 

are true. By comparing non-leptonic with semileptonic rates, it seems that, the 

AI = $ amplitude is perhaps 5 times larger than comparable semileptonic 

processes and that the AI = 3/Z is suppressed by a factor of 5 or so. (One could 

quarrel with this interpretation a bit, but I believe it represents the most 

commonly hetd point of view. ) 

Even though we do not fully understand this phenomenon, we must ask 

whether we expect a similar effect in charm-changing decays. To this end, let 

me review first why the AI = $ rule is also called “octet enhancement. ” If we 

imagine the W-boson to be very massive, then the currents between which it is 

exchanged are almost at the same point. Thus the effective weak Hamiltonian 

is often represented as a current-current product 

HW 
t P It Q(JPJ+JJP) , 

where I’ve suppressed the Fermi coupling constant. Forgetting about charm 

for a moment, the hadronic current has only two terms 

J=;dcoseC+;ssine C 

(The space-time structure is not presently of interest. ) Now id is that 

combination of quarks transforming as a rr-; is the K- . The two terms in 

the current thus transform under SU3 like parts of an octet 

J = (3: cos ec+ (3: sin ec . 
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The product of currents, then, must transform like some part of 8Czj;,8 .-4b -’ As we 

showed in Chapter II , this can be reduced as follows 

a08 =~;@8@2,7 0 8_AOl_oO1_0 - 8.. - ~-~-‘- 
symmetric antisymmetric 

states states 

Since the Hamiltonian is symmetric, {J, J+t = H eff ’ only the symmetric 

part is relevant. The singlet can not contribute to strangeness-changing decays. 

If one examines the isospin subgroups of the 8 and 22 , one finds that the 

strangeness-changing term in & transforms like isospin f , while, for the 

$J , there are terms transforming like both I = 4 and I = 3/Z . Thus, when 

this Hamiltonian is sandwiched between states, the octet will connect states 

differing in isospin by AI = i and the 27 will connect those differing by either 

AI = + or AI = 3/Z. Consequently, the SU3 invariant statement of the AI = $ 

rule is the dominance of the 8 over the 2_7 . As a technical aside, I might 

indicate here that recently more significant progress has been made in under- 

standing this enhancement. Following an idea of Ken Wilson, Gaillard and Lee 

(Phys. Rev. Letters 2, 108 (1974) ) and Altarelli and ,Maiani (Phys. Letters 

52B, 351 (1974)) considered an asymptotically-free theory of strong interactions 

in which colored quarks interact via colored gluons. They showed that the effect 

of the gluon cloud is to enhance the octet relative to the 27. However, 

the magnitude of the effect is too small to account for the observed accuracy of 

the rule and it seems likely that further suppression of the 2_7 (for example, 

because of the nature of hadronic wave functions) is required. 1 
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Now let us consider charm-changing decays. The charm-changing 

weak current is now 

J = -:dsinQ + :s cosOG . 

These two terms have the quark content of the D- and F- respectively. These 

form part of an SU3 triplet, so that the full weak current looks like 

J = -(+nBG+ (1); cosec+ (@i, cos ec + (3; sin ec . 

That part of the Hamiltonian mediating charm-changing decays is 

H AC =I = {J(AC?l), J+(AC=O)/ . 

This has the SU3 transformation properties of ?@a which has the general 

decomposition 

A@& = 2@~“015, . 

One can show that, for the particular currents entering HW , 2 is absent from 

the product. The question now is -- which of the two remaining contributions, 
:;: 

the $- or the 15 
-1v1’ is enhanced. One way to answer this would be to proceed 

along the lines of Gaillard and Lee and of Altarelli and Maiani to investigate the 

question in an asymptotically-free gauge theory of SU3 invariant strong 

interactions. It is easy to see what the result would be. In order to explain 

this, I would have to set up some machinery. Suffice it to say that the enhanced 

term turns out to be the one antisymmetric under exchange of quark fields (of 

the form($d$cGb$; Gd~a&b+c) and this corresponds to the J?“ rather than to the 

15 
-M ’ 

We’ll now give another argument based on SUq invariance which leads 
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to the same result, but I wanted to indicate first that the result depends only 

on SU3 invariance and not on SU4 symmetry. 

The following argument has been given by AItareIli, Cabibbo, and 

Maiani and, independently, by Kingsley, Treiman, Wilcek, and Zee. I will 

sketch how it goes. For more details and references, see a paper by Quigg 

and me (FERMILAB-Pub-75/21-THY, February, 1975). Let us consider an 

SU4 invariant theory, which, indeed, the strong interactions might be at very 

short distances. We must classify the current in its properties under SU4 

transformations. Obviously, the currents are elements of a 12 : 

J = -(f_5): sinBc + (f_5)03 cos Bc + (1_5): cos Bc + (12): sin BC . 

Just as in SU3. the Hamiltonian contains only the symmetric parts of the products 

of two 1,‘s , which turn out to be 

iJ,J+t = (Q@@)sym =,@L%&s@8_4s . 

Again the singlet can not generate charm-changing decays. In addition, for the 

particular currents that appear here, one can show that no states from 13,; 

contribute. (See e. g. , Einhorn and Quigg, 9. cit.) Only the 2& and 8zs are still - 

in contention. Consider the SU3 subgroups of the SU4 representations: 

2_os - 

8_4 s- j&h:” @ 3@1_@931_5ab @ 
la13= --jzg-- 
Bat - 

jAC(=O 
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.- 

(For the case of interest, the AC:*2 term is absent as is the 2&” piece of 

the AC=*I term.) Examine the pieces which do not change charm. For strangeness- 

changing decays, we know the octet to be enhanced relative to the 2J subgroup, 

but, since both the 2,O and 8_4 contain an octet, this alone is not conclusive. 

However, if the octet in the 3 were enhanced, the 2J would also be enhanced 

in the SU4 limit. The enhanced octet, therefore, must come from the 2,O . 

C 
In the asymptotically-free gauge theories investigated in the references cited, 

the two octets have different symmetry properties. It was verified that the 

octet having the symmetry of 2_Os is enhanced both relative to the octet having 

the symmetry of fi and relative to the 2J . Thus the term “octet enhancement” 

is somewhat ambiguous by itself, which provides the motivation for the complicated 

aside. 1 

Therefore, in the SU4 limit the analogue of the AI= + rule is 20 
-S 

dominance. In SU3 language, this means that the charm-changing decays due 

to that part of the Hamiltonian transforming like a b or a” will be enhanced. 

I should emphasize again that this result, which wet11 call sextet dominance of 

charm-changing decays, depends only on SU3 invariance, as our first argument 

indicated. 

How much of an enhancement do we expect? If SU4 symmetry were 

approximately correct at short distances, the enhancement of the sextet would 

be the same as the enhancement of the octet. However, we donst measure H W 

directly but only matrix elements thereof. And SU4 symmetry is a terrible 
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spectroscopic symmetry (the p, K”‘, w , 6 lie in the same multiplet as the 

4 (3.1) ). Consequently, we don’t know what the relative magnitude of sextet 

versus octet enhancement will be. If charmed mesons are found, we will be 

able to get a rough idea by comparing the semileptonic to the nonleptonic decay 

rates. 
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SOME APPLICATIONS OF SEXTET DOMINANCE 

*- Consider the decay of any of the SU3 triplet of charmed pseudoscalar 

mesons 1 P C > into some collection 1 h> of noncharmed hadrons: 

<PC I Hweak I h> * 

Because SU4 is so badly broken, it is unlikely to be useful to work out the 

relation of these decays to kaon decays which would obtain in the SU4 symmetry 

limit. However, SU3 is a much better symmetry, SO we will analyze these 

decays assuming the validity of SU3, AS discussed in the preceding sections, 

under SU 
3’ 

H weak transforms as the sum of a $05* and 1,5M 015;. .d However, 

we argued that matrix elements of the sextet are likely to be large compared to 

matrix elements of 15 --NI. So in the following we will neglect the pentadecimet. 

The quantity 

<‘C I Hweak 
transforms as 2 @ ,b = 3 0 l,O . 

Thus the final state hadrons 1 h> must be in an octet or decimet. 

Two Pseudoscalars: Two Vectors 

Suppose the final state 1 h> consists of a pair [ PIPz> of (uncharmed) 

pseudoscalar mesons. Each pseudoscalar is a member of an octet, so 

/ PiPz> transforms as 2 x 8 = 1_ 6_8S &I,? @ !,O + 10” + 8A. 

symmetric antisymmetric 

(The decomposition was worked out in Chapter II. ) Assuming sextet dominance, 

we have seen that <P 
C I Hweak 

transforms as the sum of an octet or decimet, 

soapriori we would expect there to be three SU3 invariant amplitudes for the 

process (coupling to i,?, Es, and EA. ) However, the Pauli principle eliminates 
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two of these: The initial state has spin zero, so the final state must have 

. . total angular momentum zero. The final two pseudoscalars are therefore in 

an S-wave, a symmetric spatial wave function. Because they are bosons, 

they must also be in a symmetric SU3 state, and hence,iA and ii, are not 

allowed. The final state is simply a symmetric octet. 

Similarly, one can show that the spin 13 space wave function for two 

vector mesons is a state having total angular momentum zero must be 

symmetric under exchange of the particles. So again the SU3 state must be 

symmetric which, by sextet dominance, again implies the final state must be 

Therefore, it is simple to work out (or look up) the branching ratios for 

various combinations of two pseudoscalar or two vector mesons. These are 

givenin the, Table on the next page, taken~ from the paper by Quigg and me, a. 

c& [Actually we assumed a nonet symmetry scheme (with magic mixing 

angles for the vectors ) as is suggested by the nonrelativistic quark model. I 

won’t stop here to explain how this works, but it is necessary to use this 

in order to relate the n ’ (X”) to the pseudoscalar octet or to treat the o and 

4 properly. 1 For completeness, we have included decays propertional to 

CDS * ec> cos’ Bc sin’ BC, and sin 4 ec, but, of course decays suppressed 

by tan’ Bc = 6% are rather unimportant. Notice that, while the Cabibbo- 

dominant Do decays always involve kaons, the dominant Df and F+ decays 

+ + 
often lead to channels without kaons, such as TI r) or p 0. For example, 

- 
(F+- p+o)/ CF+- 

g+&*O) = 2. 

There are many other channels involving a pseudoscalar-vector pair, 

three pseudoscalars, perhaps even a baryon-antibaryon pair, and higher 
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a) Relative Rates for F+ Decay 

4 
cos e x 

+ C 
ll rl* 419 

- 

KkO 113 

+ 
v rl. 219 

________----__---------- 
fJ+w 213 

*+q 
K K 113 

~0s’ Bc sin’ BC x 

K+rj ’ 419 

K”lT+ 113 

K+,,‘. f/6 

& 11 ie 
._________--__--------- ----- 

K*+4 113 

K*Op+ i/3 

,*+p” 116 

K 
*+ 

w- 116 

a) Decays of D+ can be obtained by multiplying each mode by 

tan2 19 
C’ 
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Relative Rates for Do Decay 

cos4 ec x 
a 
K r7’ 419 

-+ 
Kll 113 

27r” U6 K-K+ 113 

a 
Krl .i/ 18 

*- + 
K P 113 

p6 
iI 3 

116 

116 

coS2 Oc sin’ 02 

,,rlrl ’ 213 

--I- 
TTlr 113 

0 
= rl’ 219 

.---_--_-----_- ----- 

*+ I- 
K K 113 

0 
UP 113 

P+P- 
0 0 

P P 

113 

f/6 

sin 
4 

0 
C 

x 

K”,l - 419 

+- 
Kir 113 

,o 0 
KII 116 

KOT) 1118 

.-----._-_---_^____ 
K++P- 113 

K:‘OO 113 

KLOPO 116 

kOU iI6 
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multiplicities, some of which are discussed in Einhorn and Quigg, op. cit. 

Because of the very many channels open, the branching ratio into any 

given one is likely to be small. (I would be surprised if any were larger 

than 5 or 10%. ) This may make the experimental search in charmed mesons 

more difficult than one might like. And, for the reasons indicated above and 

discussed further in our paper, the abundance or nonabundance of kaons in 

the final state may not settle the matter. 

Notice also that there are no cos4 Bc decays of D+ which couple to a 

symmetric octet. The relevant term is <D+I (iJ2’ cos2 e c- (_3)2(~)22cos2 ec 

which contributes only to the decimet. (Exercise: Show this. ) As GLR 

remarked, a decimet is exotic in the usual quark model sense so it may be 

that decays into the decimet channel are not enhanced in the same way or 

perhaps by not as large a factor as are decays into the octet final state. 

The decimet contributes in principle to certain other decays, such as 

pseudoscalar-vector pair or three pseudoscalars, which are likely to be 

as important as two pseudoscalars or two vectors. If charmed particles are 

ever discovered, it will be quite interested to see how the systematics of 

nonleptonic decays work out. We may get a better idea how much of the 

enhancement-suppression phenomenon is due to H weak 
itself and how much 

is due to the particles’wave functions. 

Suppose that the decimet were not enhanced at all. Thenthe enhanced nonleptonic 

decayrate of D*wilL onlybe of order tan’f3 c times the nonleptonic width of the 

F*, Do, or 2. Then the semileptonic branching ratio of D* might well be 

competative with the nonleptonic channels. The dominant semileptonic decays 

+ 
would be D - (ii Nid’l +vl , where (EN*)’ denotes a state consisting of a 
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par K- and N pions in a combination having the S-J3 quantumnumbers of 2. 

Although we could spend a great deal more time on the properties of 

nonleptonic decays, we’ll halt our discussion here. In the next lecture, I 

would like to take up how deep inelastic processes are altered by the presence 

of charm. 
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VI. DEEP INELASTIC PROCESSES 

In this lecture, I shall discuss the implications of the charm scheme 

for deep inelastic processes such as e-e+ - hadrons, and P N - 1’ X, where 

P and 1’ are any two leptons. I shall not review the theory of these processes 

but simply recall for you some results from the conventional quark-parton 

model and then indicate how t::ey are modified by the addition of the charmed 

e-e+ Annihilation to Hadrons 

AsQ’- a> the rate for this process becomes the same, in asymptoti- 

cally free theories, as if 

-+ 
ee - qiCiei2 

- hadrons 

-d 

Since Q = 2/3(cc+ UC) - 1/3(dz+ sg), we find 

R _ [($)2+($)2+(t)2]3 =2echarmthreshold 

2 
asymptotically 

The data are shown inthe figure on the next page. 

As you can see, one could interpret R as being approximately constant 

and nearly equal to 2 from Q2 ?I toQ2’G 9 GeV2. There are incredible spikes at 

3.1 and 3.%and a rapid increase to about 6 at the peak at Q = 4.15. It then 
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decreases to around 4 at Q = 4.6 but then increases again to 5 at 4.8 and 5 Gev. 

.- These last two points seem troublesome for this picture for asymptotically 

R must decrease to 1013. As usual, we would like to see the data at 

higher energies. One could speculate that the production of pairs of charmed 

pseudoscalars occurs at 4.1 or so, but other charm channels open at 4.7 or 4.8 

(e. g. , D’D-, DoDo production at 4.1 and F+F- production at 4.7 or charmed vector 

mesons ). Perhaps there are other heavy quarks but the absence of spikes above 

3.7 militates against such an interpretation. Let me quit this rank speculation, 

but I would feel better if R were decreasing, or if the predicted value of R were 

larger. Alternate schemes having R- 5 are worth exploring. 

Deep Inelastic Lepton Scattering 

(See Ben Lee’s lectures for derivations of formulas) 

Review of Kinematics 

t Hadrons 

q = kl - k2 Scaling Variables x$L~l_ 
2MNv w 

In Laboratory Frame P = (MN,5 

v=E -E 
1 2 

2 eL 
2EiE2 sin 2 E1 -E2 

x = MN(Ei - E2) Y= 
Ei 

2E2 sin2 eL 
Note: v =xy =- 

MN 
- 1s determined entirely by a measurement of the 

2 
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outgoing lepton’s energy and direction. This is an especially useful scaling 

variable when the incident beam energy is unknown (e. g. , broad-band neu- 

trino beam). 

Because the interaction is mediated by elementary particle exchange (TV or 

W or Z), the dynamics factorizes into a (known) leptonic piece and an (un- 

known) hadronic piece. The strong-interaction dynamics is parametrized 

2 
in terms of structure functions which, by covariance, depend only on q , V, 

and not, e. g. , on s = (kl + p)‘. In the Bj limit (v + m, fixed x). These 

various dimensionless structure functions become functions of ox. The 

dependence on y is determined from kinematics (spin). It has become more- 

or -less conventional to define the structure functions as follows : 

For photon exchange : 

W 
tJ” 

=..Jf$P,+&)(Pv+&)-wi(qp” -q+) 

2 
RecallX 5 -9 = - 

2MNv 

The cross section being related by 

du 2 (Y 
dQdE2 = 

’ sin’ 
@L c 

2 *L 2 
cos ?W2+ 2sin 

eL 
2Wi. 1 

4E 1 -z- 
For W(or Z) exchange: 

PP ie 
W 

P” 
=+w2 -gp,wl - 

MN 

p”;h P’lqhW3 

2MN 

+ terms of order M 
P 
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All Wi = Wi (v,q’). (All the preceding applies to spinless or unpolarized 

targets. If polarized, there are other terms. ) 

B j Scaling Hypothesis : (V + m, fixed x) 

WI - FIW 

VW 2 
- - F2W 2 
MN 
VW 3 
2 - F3(x) 

MN 

2 
do” GF MNEl 

dxdy- TT c 
xy2F1+(I -y)F2- ~(1 -iyW3 

3 

(For 7, change sign of F3 term. ) 

In principle, these three structure functions could be determined. They 

simplify for spin i constituents:F2= 2xF 
1 

F3 =-72Fi (partons, antipartons) 

do’ -z 
dxdy 

drr 7 

(1 -Y)~F&~ 
3 

TX, + F$x) 
7 

, _ - -.- 
dxdy TT )‘- J’ -L 

L J 

where F L” 
= contribution to F 2V from partons (by definition, relative to 

left -handed neutrino) 

FR” = contribution to F2” from antipartons. 

This completes our review of kinematics with only spin-one-half con- 

stitutents. What if constituents are quarks ? 
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iIi?-+cqtx, LY (Y 
Photon Case 

Assume photon is colorless (alternative would be the Han-Nambu scheme, not 

discussed in these notes). Then, for the proton, 

VW =FYPz 0 $ 2 c 1 2 
2 2 x U(x) + C(x) + T x [D(x) + S(x)], 10 

where Qcu(x) z qO(x) + 9,(x) for each of the four quarks. qe(X) = probabilityto 

find quark $a with momentum fraction x. Recall 

C 
9,(x) - $ as x gets wee 0 

C( II cib- 

If SU3 symmetry holds, Ci = C2 = C3 if u =d =s = ~=~=S: If SU4 symmetry 

(bad), charmed quarks are also equal. 

So long as the probability of finding a charmed quark in a proton is small 

(compared to noncharmed quarks ), charm will have no effect on deep inelastic 

electroproduction. (If it has any effect at all, it would be expected to occur 

for x small. ) This is quite an important point. Even though charm causes 

dramatic changes in e-e+ annihilation (and also the production of p-p+ pairs 

in hadronic collisions), this behavior. is r,econcilable with scalings at low energies 

in electroproduction. It simply means that there are few charmed quarks to 

be found in a nucleon. This means, for example, that although the $,(+) is 

easily produced in photoproduction (and probably in electroproduction at 

small q2), it will probably disappear at large q2. This should be quite 
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analogous to rho photoproduction. We do not expect deep inelastic electro- 

. . production to be a good source of $c’s or particles of non-zero charm. As 

we shall soon see, the situation may be very different in neutrino scattering. 

2 2 F;“= 0 $ 1 
x. [D(x) + C(x)] + 7 x 

0 [ 
U(x) + S(x) 1 

F2 
Y~~YP+~Y~-~ 

2 2 
- Tx + D(x) + $ x C(x) + ;x S(x). 1 

Neutrino Scattering (Charged Current) : 

What Can Happen? 

Without Charm With Charm 

d 

d(x)cos20C d(x)sin2BC 

d d d 

s(x)sin2BC s(x)cos2ec 

S 

uT&+)L( qcos2tJc+ sin20Cj ‘tiHcos20c+ sin2E) 

= c(x) = C(x) 

du 

c 

1 for v-q (or 7-T) 

dxdya 
(1 - y)2 for v-q (or v-q,. 

Thus 

daVP GF2MNE1 -= 
dxdy in 

dcr* G;“NE1 -= 
dxdy TI 
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where, 

Without Charm With Charm 

VP 
FL = d(x)cos2& + s(x)sin20 c d(x) + s(x) 

VP 
FR 

= r(x) zjx, + F(x) 

For antineutrinos, simply interchange role of quarks and antiquarks, so 

Without Charm With Charm 

TP 
FL = u(x) u(x) + C(X) 

VP 
FR = T(x)c0s2ec+ qix, sin2ec ;icx, + F(x) 

ucd For a neutron, simply interchange --* z . For matter equal mixtures of 

protons and neutrons 
) 

define 

F” = F.“‘+ F.vn 
1 1 

i = L,R 

Similarly for F?. Then 1 

Without Charm With Charm 

” FL = (u + d) cos20c+ 2s sin2ec u+d+Zs 

!J 

FR 
=u+;i Y+ d+ 2: 

-------------------------- 

FL” =u+d u+ d+ 2c 

v 
FR = (U+ ;i, c0s2eC+ 2ssin2eC u+ ;i+ 2s 

-------------------------- 

Valence quarks only: (u = z = s = s = c = c = 0) 

v 
FL” = FL “Charge Symmetry Invariance” 

v 
FR” = FR = 0 
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In the absence of charm, because of the smallness of the Cabibbo angle, 

-- charge symmetry may work pretty well. If 

2stan”J <<u+d C 
- 2 

2rtan ec << ii+ Z, 

then FL” = FLYand F ’ 
R 

zz FRv (even though non-zero). Because tan28 c = 670, 

we expect that, even if 2s = U+ zand 2s = u + d, as would be the case in the 

SU3 symmetry limit, charge symmetry will hold to about 5% in the absence 

of charm. We discuss this further later in this lecture. 

Time Out for Data 

Suppose contributions due to charm could be neglected, e. g., because we 

are below threshold. Because the Cabibbo angle is small, we can probably neglect 

contributions due to strange quarks as well. This enables us to determine utd and ;+d 

from data on neutrinos and antineutrinos. Based on the data from Gargamelle, 

Perkins has deduced these (Fig. 1). (See his lectures at Hawaii Summer 

School. ) Notice that the data are consistent with the valence quark picture 

for x 2 0.3 or so, i.e., U+ d = 0. (Nothing can be said about s and s because of the 

small Cabibbo angle. ) For x < 0.3, it would appear that u+ d # 0, but it is 

questionable whether these data are relevant to scaling for x ,< l/4, because 

neutrinos as low as 2 GeV are included (so Q2 < 1 GeV’). Given these values 

of u + d and u+ d, we can go further. From SLAC, we know VW;’ and 

” wzy “. One can combine all these data in another way to deduce u + u, 

d + z, and s + s(there is no Cabibbo suppression in electroproduction). The 

resulting points are shown in Fig. 2 [from Savit and Einhorn, Phys. Rev. 

Letters 33, 392 (1974)]. Notice that, although the errors are large, it 

would appear that S = s t s-is non-zero for x 5 0.6. (We do not show S for 

x I< 0.2where it becomes large and negative. I believe this is a reflection 
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of the non-scaling character of the small x neutrino data rather than a 

0. fundamental breakdown of the underlying picture. ) 

Returning to theory, the so-called “charge symmetry” relation receives 

a lot of attention, so let me disc&s it a bit further. This relation comes about 

in the absence of charm by setting .9C = 0. Then Frp = F; n (i = R, L). We have 

seen that, in the absence of charm, we expect it to hold to an accuracy of 5% or so, 

even better so long as the valence quarks dominate. Now consider the inclusion 

of charmed quarks. Can we still have FL”” ? Looking back at our 

formulas,tMs would.mean that d(x) + s(x) = d(x) + c(x), which would be true 

only if either 

(1) S(X) = C(X) (Unlikely, I believe except possibly at x=0) or, 

(2) s(x) << d(x) and c(x) << d(x). - 

It is easy to believe that c << d even at small x since SU4 is a badly 

broken symmetry. However, SU5 is much better and it is unlikely that 

s(x) << d(x) at least at small x (say x 5 0.1). Therefore, with charm, we might 

expect a breakdown of charge symmetry invariance at small x. In experi- 

ments on nuclei (approximately equal mixtures of protons and neutrons), we 
- 

would have F ’ = 
L 

F ” if either 
L 

(1) s(x) = c(x) or 

(2) s(x) << i(u + d) and c(x) <C i(u + d). 

Turning to the antiquarks, we would have F ” = R 
F ” if u + d + 2~ = u+ d+ 2; 

R 

which would obtain if either (1) C = S or (2) 26, 2s << ; + i. It is 

even more difficult to believe that 2s << u+ d than to believe 2s << u + d. 

Thus we are even more confident that, with charm, for small x (say x 5 0.2), 

charge symmetry invariance will surely fail for the right -handed structure 

functions, F . 
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Remarks on recent data: 

There is some indication from Experiment #1A (Cline-Mann-Rubbia) 

that, for x 5 0.1, there is a breakdown of charge symmetry invariance, 

especially for antineutrinos. [See Phys. Rev. Letters 2, 597 (1975) and 

references therein. ] The breakdown occurs only for E or E- 2 ” ” 30 GeV, as 

if there is some threshold effect. It is tempting to interpret this as charm. 

Such an interpretation will depend on further data with better statistics so 

that careful determinations of the quark distributions would be possible. 

With reasonable quark distributions, I have not been able to understand their 

data, assuming scaling. It is likely that threshold effects are important, however. 

Back to theory: Without getting into a long controversial discussion of 

what these quark-parton diagrams have to do with final states, let me specu- 

late on how charm will show up in final states in neutrino scattering. Let me 

assume that I can neglect charmed quarks in a nucleon (c = ?! = 0) compared 

to non-charmed quarks. Let me further assume that, when a charmed quark 

is produced, it somehow always evolves into a charmed hadron. Then for 

charm production in neutrino scattering, the important diagrams (for “p 

scattering) are 

d(x)sin’BC+ s(x) ~0~~6~ contributing to constant term in y; in antineutrino 

(3~) scattering, they are 
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T(x) sin20C + :(xX, cos2 Bc. contributing to constant term in y. To summarize, 

we are guessing that for p + n or Fe or linoleum) 

[(u + d) cos .9 
2 

dov 
C + 2s sin eg] + (1 -Y)~ [u+ ;il leads to C = 0 

final state 
dxdya 

[(u + d) sin 0 
2 

C + 2s cos eC2] leads to C = +1 final state 

[(U+ ;~)cosB~~+ ZFsine:]+ (i -y)2]u+d] leads to C = 0 

do 
v final state 

dxdy= 
[(U+ ;i, sine 

2 
C 

+ 2scos ec2] leads to C = -1 final state 

Neutrino scattering will lead to a hadron with C = 1, perhaps a charmed 

baryon (e. g. , Ci’ or Ci++) or a charmed meson (F+, D’, or Do). Antineutrino 

scattering will lead to C = -1 hadron states. This could be an antibaryon 

but, if threshold effects play as significant a role as we suspect, this would 

be much suppressed so we would only find charmed mesons (e. g. , F-, D-, 

Do). 

We have argued previously (Lecture V ) that the semileptonic branching 

ratios would be less than 1% for most charmed hadrons, with the possible 

exception of D*. In any case, the underlying process is c - S).L+V 
dinC =+I 

hadrons) or c - $-TP (for C = -1 hadrons). There would then be two muons 

in the final state, necessarily of opposite sign. Is this the source of 14 
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dimuons of opposite sign recently reported? [See Benvenuti et al. , Phys. 

Rev. Letters 34, 419 (1975). ] More events of this type have been seen 

(D. Cline, private communication). 

Even in the absence of positive identification of a charmed hadron, how 

would crossing charm threshold lead to a change in the deep inelastic 

structure functions ? In neutrino scattering, we see that it would cause an 

increase in the constant term in (1 -y) in do”/dxdy. The percentage increase 

is likely to be small, since this constant term is dominated by valence 

quarks. One may need to go to quite small values of x to see it. 

In antineutrino scattering, the charmed final states again contribute to 

a constant term in (1 - y). The occurrence of a constant term is expected 

anyway, due to non-valence quark contributing to C = 0 final states. So the 

presence of a constant piece is no surprise. However, above charm threshold, 

the constant would increase, probably by a significant amount. Obviously, 

this would be most easily seen near y = 1. 

It is sometimes remarked that it should be easier to produce charm in 

neutrino scattering than in antineutrino scattering because the neutrino need 

only find a valence quark while the antineutrino must hit a non-valence quark. 

Let me caution you against such an interpretation. As you can see, the 

contribution of valence quarks in do” which lead to charmed final states is 

suppressed by sin20c, whereas strange quarks produced charmed quarks 

2 
with cos 0 for both neutrinos and antineutrinos. C To say this again in the 

context of an oversimplified model, consider the valence quark + SU3- 

invariant sea, but suppose the probability of finding charmed quarks in nucleons 

is negligible: 
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u = u&x) + qo(x) u=z=s =g=qo(x) 

d = dvW + qo(x) c =c=o 

Then 

do” 

I 

[NV+ dv)~~s2ec+ 2qo]+ 2qo(1 -yj2 leads to C = 0 

dxdya 
(uv + dv) sin20C+ 2qo leads to C = 1 

v 

C 

2qo +(uv+dv+2q0)(1-y!2 + 2qo leads to C = 0 
da 
dxdy= 

2qo leads toC = -1 

Whether it is significantly easier to produce charm in v scattering depends 

on the relative magnitude of [(uv + dv)/2Jsin2Bc and qo. For small x, I 

suspect q. is quite comparable to the valence quark contribution, so I would 

guess that neutrinos offer no particular advantage over antineutrinos for 

producing charmed final states. 

This concludes our introduction to SU4 and charm, as I have over-run 

the time allotted. I hope these lectures help some of you to better appreciate the 

burdgening literature on this subject. I encourage you, theorists or 

experimenters, to come see me or other members of Fermilab’s Theoretical 

Group if you have any questions at all. You might have precisely the question 

none of us has thought to ask! 


