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1. Yang-Mills fields 

I. 1. Introductory remarks 

Professor Faddeev has discussed the quantization problem of a system 
which is described by a singular Lagrangian. For the following, we shall as- 
sume that the student is familiar with the path integral formalism, and the 
quantization of the Yang-Mills theory. The following remarks are intended to 
agree on notations. 

The Yang-Mills Lagrangian, without matter fields, may be written as 

For simplicity we shall assume ,the underlying gauge symmetry is a simple 
compact Lie group G, with structure constantsfabc. 

The Lagrangian (1.1) is invariant under the gauge transformations, 

= U(e)[L,Ap) -f o-‘(e)all U(E)] t+(E) > (I-2) 

where the E are space-time dependent parameters of the group G, U-‘(E) 
= M(E) and the t’ are the generators. 

These gauge transformations form a group, i.e., if g’g = g”, then 

(Problem: prove this statement.) 
The infinitesimal version of the gauge transformation is 

L,,SA; = +,a/ - fabcA;ebLC , 

Of 

SA” = P 
-.-iaMea +fahcebA;. (1.3) 

It is precisely this freedom of redefming fields without altering the Lagran- 
gian that lies in the heart of the subtlety in quantizing a gauge theory. In the 
language of the operator field theory, to quantize a dynamical system one has 
to find a set of initial value variables, p’s and q’s, which are complete, in the 
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sense that their values at time zero determine the values of these dynamicai 
variables at all times. It is only in this case that the imposition of canonical 
commutation relations at time zero will determine commutators at all times 
and define a quantum theory for a gauge theory. This can never be done be- 
cause we can always make a gauge transformation which vanishes at time zero. 
That is, it is impossible to find a complete set of initial-value variables in a 
gauge theory unless we remove this freedom of gauge transformations. 

To quantize a gauge theory, it is necessary to choose,a gauge, that is, im- 
pose conditions which eliminate the freedom of making gauge transforma- 
tians, and see if a complete set of initial-value variables exist. 

There is a special gauge, called the axial gauge, in which the quantization 
isparticularly simple. It is defined by the gauge condition that 

?pd”(x) = 0 P , (1.4) 

where TJ is an arbitrary four-vector. In this gauge, the vacuum-to-vacuum am- 
plitude can be written as 

ejW=Nf[cU~] II S@“(x)-rj) 
w 

where N is a normalizing factor. 
There is in principle no reason why eq. (1.5) cannot be used to generate 

Green functions, by the usual device of adding a source term in the action. 
That is, WC define the generating functional of the connected Green functions 
WA L’;l by 

X exp {iJd4x{J?(x) + $(x)A pa(x)]) . (l-6) 

However, the Feynman rules would not be manifestly Lorentz covariant in 
this gauge and it is desirable to develop quantum theory of the Yang-Mills 
fields in a wider class of gauges. 

As Professor Faddeev explained, eq. (1.6) is an injunction that the path in- 
tegral is to be performed not over all variations of A:(x), but over distinct or- 
bits of A:(x) under the action of the gauge group. To implement this idea, a 
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“hypersurface” was chosen by the gauge condition 11 -A a = 0, so that the hy- 
persurface in the manifold of all field intersects each orbit only once. The 
problem we pose ourselves is how to evaluate eq. ( 1.6) if we are to choose a 
hypersurface other than the one for the axial gauge. 

1.2. Problem: Coulomb gauge 

The gauge defined by ViAf = 0 is called the Coulomb gauge. In this gauge 
the two space-like transverse components of Ai are the q’s, and the two space- 
like transverse components of F& are the p’s, 

Express the Lagrangian ( I. 1) in terms of the Coulomb gauge variables A!; 
0; ri”f; f"; F;: 81;. Referring to Professor Faddeev’s lecture, com- 

for this gauge. 

."“n 
2. Perturbation expansion for quantized gauge theories 

2.1. General linear g(wgcs 

The foregoing example, the axial gauge condition, is but one of the ways to 
eliminate the possibility of gauge transformations during the period the tem- 
poral development of a quantized system of gauge fields is studied. Clearly 
this is not the only way, and in fact, we could define a gauge by the equation 

F= [A;, cp] = 0 for all a , (2.1) 

provided that, given A,“, and other fields which we shall collcctivcly call p 
there is one and only one gauge transformation which makes eq. (2.1) true. 
For convenience, we shall deal only with the cases in which Fa is linear in the 
boson fields Ai and p. In this lecture, however, we shall be concerned primari- 
ly with the instance in which Fa depends on AZ alone. 

Before proceeding further, let us pause here briefly to review a few facts 
about gloup representations. Let g,g’ E G. Then gg’ E C and 
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The invariant Hurwitz measure over the group G is an integration measure of 
the group manifold which is invariant in the sense that 

dg’ = d($g) . (2.3) 
If we parametrize rl(g) in the neighborhood of the identity as 

W(g) = 1 + i@L, + O(f2) , (2.4) 

then we may choose 

dg= ? de= g=l. 0.5) 

Consider now the integral 

where (A,h(x))g denotes the g-transform of A:(x), as defined by eq. (1.5). 
The quantity AF[Ai] is gauge invariant, in the sense that 

A,’ [(-4j)gJ =j c dg’(x) n S (P[(A;(x))g’gJ) 0,x 

=s n d@‘&(x) n 6 (P [@,h(x)@‘]) 
X ax 

= $ l-J &‘I-$ g 6 wa [(AiybW”l) 9 

= A,’ [A;], (2.7) 

where we made use of eq. (2.3). 
According to eq. (l.S), we can write the vacuum-tovacuum amplitude as 

where 5 = f d4xJ(x) is the action. Since 
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we’may rewrite eq. (2.8) as 

eiW =N j@4AF[Al~fl 
X 

dg(x)~ S(F”IAg(dl) 

X by 601 -AbO))expWWII. 
, 

(2.10) 

In the integrand we can make a gauge transformation A:(x) + (A,b(x))g-‘. 
Under the gauge transformation of eq. (l-5), the metric [dA], the action S[A] 
and AF[A] remain invariant, so eq. (2.10) may be written as 

ei’V=NJ[dA]A,[A]tinx s(Fg[A(x)])eiS[Aj 
, 

(2.1 J) 

Let us assume that 

Then we have 

which is a constant independent ofA. Therefore, this constant may be ab 
sorbed in N, and 

,iW =N &-~]A~[A] II 6(F”[A])eiS[Al. (2.12) 

This is the vacuum-to-vacuum amplitude evaluated in the gauge specified by 
eq. (2. I>. 

Let us evaluate AF [A]. Since in eq. (2.12) this is multiplied by II6 (F, [A]), 
we need only to know AF[A] for A which satisfies eq. (2.1). Let us make a 
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gauge transformation on A so that F= [A] = 0. For g in the neighborhood of 
the identity, then 

(2.13) 

where Dp is the covariant derivative 

qb =6a,bap -gf,&; . (2.14) 

Therefore, from eq. (2.6), we see that 

where 

That is, 

(2.16) 

(2.17) 

Mere, we can afford to be sloppy about the normalization factors, as long as 
they do not depend on the field variables A,,. 

The factor A,[A] can be evaluated from eq. (2.17) for various choices of 
I? The example we will consider is the so-called Lorentz gauge, 
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FU = afin; + P(x), 

where C”(X) is an arbitrary function of space-time. Under tire infinitesimal 
gauge transformation (1.3) ofA:, F, changes by 

ar 
SFQ=--(6 

g 
a -gf ab P AC)eb ubcp ’ 

so that 

bz,XlM~lb,J4 = -aiD”%“(x - y) - Y 

The appearance of the delta functionaJ JJ6 (Fa [A]) makes eq. (2.12) not 
very amenable to practical calculations. We could have chosen as gauge condi- 
tion: 

F”[A]-c”(x)=O, (2.18) 

with an arbitrary space-time function co, instead of eq. (2.1). The determinant 
AF[A] is still the same as before, that is, is given by eq. (2.17)‘ and clearly the 
left-hand side of eq. (2.12) is independent of co. Thus, we may integrate the 
right-hand side of the equation 

eiw =N[[dA]AF[A] n 6(F”[A] - cO)eis~AI 

over c,(x) with a suitable weight, specifically with 

exp(zjd”x c:(x)) ) 

(2.19) 

where 01 is a real parameter, and obtain 

eiw =NJ[d4]AF[A]exp iS[A] - $sd4x(F’[A])2 . 
1 

(2.20) 

Eq. (2.20) is the starting point of our entire discussion. We define the gen- 
erating functional W,[J,“] of the Green functions in the gauge specified by F 
to be 

(2.21) 
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Please note that the above is a definition. We have not answered yet how Green 
functions in different gauges are related to each other, or to the physical S-ma- 
trix. We shall return to these questions in a future lecture. 

2.2. Faddeev-Popov ghosts 

As we have noted in the preceding section, AF[A] has the structure of a 
determinant. Such a determinant occurs frequently in path integrals. 

Consider a complex scalar field p interacting with a prescribed external po- 
tential V(x). The vacuum-tovacuum amplitude is written 

eiw =Nj[dlp] [dvt]exp{iJd4x$(x)[-82 -p2+ V(x)]~(x)) 

- @et M(x,y))-’ , (2.22) 

where 

M(x,y) = [-a2 - j.2 t V(x)]S4(x - y) - (2.23) 

On the other hand, we can evaluate IV in perturbation theory: it is a sum of 
vacuum loop diagrams shown in the following figure: 

v 

W=V o+v ov+v 0 v +-. 

This result can be understood in the following way. We write 

(det M(x,y))-’ = (det MO(x,y))-’ 

X tdet [S4(x - Y) + A,& - Y) W)J)-* , (2.24) 

where 

q$GY) = t-a2 - P2P4(X -y) , (2.25) 

1 
-a2-p2tie I> 

Y * O-26) 
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(The ie prescription in eq. (2.26) follows from the Euclidicity postulate inher- 
ent in the definition of path integrals. See refs. [1,2],The first factor on the 
right-hand side of eq. (2.24) may be absorbed in the normalizing factor N. The 
second factor may be evaluated with the aid of the formula 

det( 1 + t) = exp Tr In(l t L) . 

Thus, 

iw= -Tr In(1 +A,V), (2.27) 

which shows very clearly ?V as a sum of loops. 
Next, what if p and (p; were anticommuting fields? Nothing much changes, 

except that each closed loop acquires a minus sign. Thus, if p and V? are anti- 
commuting fields, we have 

eiCV = N l [dvl [drltlexp(iSd4xl.lt(x)[-a2 -P’ + W)l~(x)~ 

- det M(x, y) - exp {Tr In( 1 + AF V)) . 

The above.is a heuristic argument of how integrals over anticommuting c-num- 
bers should be defined to be useful in the formulation of field theory. In fact, 
Berezin defines the integral over an element of Grassmann .algebra ci as 

s dcr = 0 p s dCi cj = liij . 

It then follows 

.v dc i eci”ijci - (det A)‘j2 . (2.28) 
i 

(Prohlern: prove this statement.) We shall not dwell upon the integration over 
Grassmann algebra any further, but rather refer you to Berezin’s treatise to be 
cited at the end of this lecture. A nice mnemonic for the rules of integration 
over anticommuting c-numbers is, as told to me by Jean Zinn-Justin, that “in- 
tegration is equivalent to derivation”. 

For our purpose, we can write 
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or symbolically 

AFL41 = ffj [@I b-hlexp IiEMFvI , (2.30) 

where ga(x), Q(X) are elements of Grassmann algebra. 
Note that the phase of the exponent ,$.MFq is purely conventional. 
The generating functional WF[$] of eq. (2.21) can now be written as 

exp{ilV&~]} =“$ [dAd[dq] 

where the effective action Se, is given by 

The fields t, n are usually called the Faddeev-Popov ghost fields. They are un- 
physical scalar fields which anticommute among themselves. (Sometimes it is 
convenient to think of t as hermitian conjugate of n, but it is not necessary.) 

In the Lorentz gauge, where we shall write 

the term in the effective action bilinear in 2: and 7 is 

s d4x $5 Dib qb(x) =$d4x ap .&(x)D;~ nb(x) 
cc 

= d4x[V&(x)ar r&(X) - ga’.&(x)F,b&x)Vb(x)] . (2.33) 

Even when we regard $ and v as a conjugate pair, the interaction of eq. (2.33) 
is not hermitian. The sole raison d’e^tre of this term is to create the determi- 
nantal factor, eq. (2.29). 

2.3. Feynnran rules 

To describe the Feynman rules for constructing Green functions in pertur- 
bation theory, it is more convenient to couple & and nQ also to their own 
sources 0, and pi, which are anticommuting c-numbers. We define 
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)I 
, 

where we have suppressed gauge group indices. 
The Feynman rules are obtained from eq. (2.34) in the usual way. We will 

review briefly the derivation of the Feynman rules in a simpler example, an 
interacting real scalar field V. The action S[cp] is divided into two parts, 

w = qJ [IPI + s, M * (2.35) 

where SO [p] is the part quadratic in the field (B, and has the form 

S&l =~d44f(acd2 - b2v21. (2.36) 

The generating functional i W[J] of the connected Green functions is given by 

eiwfJ] =J[dlp]exp{iS[lp) + isd4xJq} 

r [dpjexp IiS0 [up] + i d4xJp} _ (2.37) 
N s 

Therefore, we must now compute 

eiwo[J1 = NJ [dq]exp {iSo [p] + ild4xJq} . (2.38) 

Since So is quadratic in p, we can perform the integration. 
The functional integral in eq. (2.38) gains a well-defined meaning by the 

Euclidicity postulate, that the Green functions eq. (2.37) generates must be 
the analytic continuations of the well-behaved Euclidean Green functions. 
We obtain 

ei~o[JI = exp{-jji 
s d4xd4~JW& -Y)JW, (2.39) 

where 
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Eq. (2.37), or 

exp {i W[J]) = exp exp{il.Vo [s]) , (2.37’) 

may be transformed into a perhaps more tractable form by the use of the for- 
mula 

F(-i$-)G(x)=C(-i$-)F’Cy)e’X.Yly;O, 

which can be proved by Fourier analysis (see ref. [2]), 

J d4x d4u *,(x - v) &q &y 

X exp OS, [p] + i~d4xJlpl~7=0 . (2.4 I) 

In much the same way, we can develop the Feynman rules for the gauge 
theory from eq. (2.34). To be concrete, let us adopt the Lorentz gauge, 
F, = -ap-4:. We define SO to be 

taP~Qall~=ti:.ptpt-fl-JP.AP . 
3 

(2.42) 

The remainder of the action S consists of the cubic and quartic interactions 
of the gauge fields and the interaction of the gauge field with the ghost fields. 
The Feynman propagator for the gauge bosons satisfies 

$,a, 1 -k AF”(x -u) =g;a4(x -u) , ( )I (2.43) 

and is given by 

d4k A;!‘(x - r) =s - e 
(W4 

Note that in this gauge the ghost field ,$Y always appears as ap $?. The generat- 
ing functional IV, [J,,fl,@] can be written as 
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exp{ij~LIJP,P,P’fll = exp is ( d4xd4+%w’)6~~ &$+--r) 

6 6 
+DF(x -)w@@ 1) 

exp (i tS1 Pp, -5 rll 

(2.45) 

where DF(x - u) is the Feynman propagator for a massIess scalar field, 

& ,-ik: b-y) 

DF’x -‘~=S~2 k2 $ ic ’ n 

That is, in this gauge, the Faddeev-Popov ghosts are massless. 

2.4. Mixed transformations 

A few remarks on the integration over elements of the Grassmann aigcbra: 
Since we wish to maintain the integration rule 

under a change of variables, 

ci=A& fi ci=,& EjdetA, 
i=l 

we must have 

7 dci = (de t A)-’ y dEi - 

Further, let us consider a mixed multiple integral of the form 

$rhci I-I de,, 
i tJ 

where B’s are elements of the Grassmann algebra. We consider a change of in- 
tegration variables of the form 
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and ask how’the Jacobian must be defined. We consider first the change 
k 0) + 01, a 

x =AY t drle - CUB+~Y 

= (A - CfB-'p)y + aB-'e e 

Note that a! and p are anticommuting. Thus, 

Now we perform the transformation (y, 8) + 0, cp), 

B=Dy+Btp. 

Since 0 and cp are anticommuting numbers, 

As a result, we have the rule 

s n dxi n dUP = j n dri n dqP det(A - cuB-l@(det B)-’ I 

The above result is in accord with the definition of a “‘generalized deter- 
minant” or Arnowitt, Nath and Zumino. They define the determinant of the 
matrix 

by 
detC=expTrlnC, 

with the convention that 

Tr C=Cii - CP,, . 

This definition allows the following relation to be valid: 
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and therefore the product property of the determinant 

det(C1 C2) = det C, det Cz . 

TO see this, we set Ci = exp Ji, SO that det Ci = exp Tr Jp NOW Cl Cl 
=exp{J1 tJztJ& whereJ12 is the Baker-Hansdorff deries of commutators. 
But Tr[JI! Jz] = 0, erc., so that det(CI C,) = exp Tr(J, + J2). Now the ma- 
trix Ccan be decomposed uniquely into the form ST, where 

S= T= 

and 

a =A -CUB-‘/~, b=arB-I, 

u=P, z= B. 

Thus 

det C= det S det T= (det a)(det z)-’ . 

(The last follows from the definition det C= exp[(ln C)ii - (In C)PP].) 

2.5. Problems 

2.5. I. One should repeat the foregoing arguments for quantum elcctrodynam- 
its, to obtain the usual Feynman rules in the Lorentz gauge. Let us note that 
for OL = 0, one gets the photon propagator in the Landau gauge; for OL = I, that 
in the Feynman gauge. What happens to the Faddeev-Popov ghost fields in 
those cases? 

2.5.2. Just for the sake of exercise, quantize electrodynamics in the gauge 
,F= aflAP + XA:. Derive the Feynman rules. 

2.5.3. Show thatJ u dci n dci exp {ciMV ci)- det M , where c and c’ are 
anticommuting. * i 
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3. Survey of renormalization schemes 

3. I. Necessity for a gauge-invariant regufarization 

In this lecture, we will develop two subjects that are needed to understand 
later Lectures. These are reguIarization and renormalization of Green functions 
in quantum field theory in general, and of Green functions in a gauge theory 
generated by the expression (2.34), in particular. 

The Green functions generated by eq. (2.34) are plagued by the ultraviolet 
infinities encountered in any realistic quantum field theory. We are going to 
develop a method of eliminating these divergences by redetini tions, or renor- 
malizations of basic parameters and fields in the theory, in such a way that the 
gauge invariance of the original Lagrangian is unaffected in so doing. 

The gauge invariance of the action.has various implications on the structure 
of Green functions of the theory. The precise mathematical expressions which 
are satisfied by Green functions due to the gauge symmetry of the underlying 
action are known as the Ward-Takahashi (WT) identities. What we will show is 
that these identities remain form invariant under renormalization which elimi- 
nate the divergences. This point, that renormalization can be carried out in a 
way that preserves the WT identities, is of utmost importance for the follow- 
ingreasons. First, it puts such a stringent constraint on the theory and the re- 
normalization procedure that the renormalized theory becomes unique, once 
the underlying renormalizable theory is given. Second, and perhaps more to 
the point, the unitarity ,of the renormalized S-matrix is shown by the WT iden- 
tities satisfied by the renormahzed Green functions. The latter point requires 
clarification. 

In a perturbative approach, non-Abelian gauge theories suffer from such 
severe infrared singularities that nobody has succeeded in defining a sensible 
S-matrix in this framework. Consensus is that a sensible gauge theory arises 
only in a non-perturbative approach, wherein gauge fields and other matter 
fields carrying non-Abelian charges do not manifest themselves as physical par- 
ticles. Physically, this conjecture is at the heart of the hope that color-quark 
confinement might arise naturally from a non-Abelian gauge theory of strong 
interactions. There is an exception to this, and this is the case when the gauge 
symmetry is spontaneously broken. In fact, this latter possibility is directly 
responsible for the revival of interest in non-Abelian gauge theories a fe.w 
years ago, in conjunction with efforts to unify electromagnetic and weak in- 
teractions in a non-Abelian gauge theory. In this case there is no difficulty in 
defining the physical S-matrix, and the unitarity of such a theory is assured by 
the renormalized version of the WT identities. Even in unbroken gauge theory, 
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the S-matrix can be defined up to some lower order in perturbation theory, 
and here again the unitarity of the S-matrix is a consequence of the WT iden. 
ti ties. 

Why is the unitarity such a big issue in gauge theory? After all, one does 
not worry that much about the unitarity, say, in a self-interacting scalar boson 
theory. The reason is that the quantization procedure we adopted makes use 
of a non-positive definite Hilbert space, as we can readily see from the struc- 
ture of the gauge boson propagator, eq. (2.44). Further, the Green functions, 
of the theory contain singularities arising from the Faddeev-Popov ghosts be- 
ing on the mass shell. Thus, in order that the theory makes sense, these un- 
physical “particles”, corresponding to the ghost fields and the longitudinal 
components of gauge fields, must decouple from the physical S-matrix. The 
renormalized WT identities are necessary in showing this. 

The WT identities are usually derived by a formal manipulation of eq. 
(2.34). However, the Green functions generated by eq. (2.34) are notoriously 
ill-defined objects due to ultraviolet divergences. It is therefore necessary to 
invent a mcans of “regularizing” the Feynman integrals which define them 
without destroying symmetry properties of the Green functions, so that as 
long as we keep a regularization parameter finite, the integrals are well-defined. 
It is only then that we can attach concrete meaning to the WT identities. After 
renormalization, the “regulator” may be removed, and if the renormalization 
is to be successful, the renormaiized Green functions must be finite and inde- 
penden t of the reguiariza tion parameter. 

A well-known regularization scheme in quantum electrodynamics is the 
Pauii-Viilars scheme, in which one adds unphysical fields of variable masses to 
the Lagrangian in a gauge invariant way. After gauge invariant renormalization 
the variable masses are let go to infinity, and renormaiized quantities are shown 
to be finite in this limit. In non-Abelian gauge theory, this device is not avaii- 
able, but an ‘dternative procedure, wherein the dimensionaIity of space-time is 
continuously varied, was invented by the genius of ‘t Hooft and Vel tman. 

In the next section, we will give a brief summary of the renormalization 
theory a la Bogoliubov, Parasiuk, Hcpp and Zimmermann. This will be follow- 
ed by an introduction to the dimensional reguiarization of ‘t Hooft and Veit- 
man. 

3.2. BPHZ renormalization 

In this section we wig give a brief survey of renormalization theory devel- 
oped and perfected in recent years by Bogoiiubov, Parasiuk, Hepp and Zim- 
mermann (BPHZ). Nothing will be proved, but we will try to give definitions 
‘and theorems in a precise manner. 
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First, we will give some definitions. The interaction Lagrangian is a sum of 
terms 1r which is a product of 6, boson fields andf,: fermion fields with di de- 
rivatives. The vertex of the ith type arising from JZi has the index 6, defined as 

ai = b, t zfi t di - 4 = dim(Xi) - 4 . (3.1) 

Let I’ be a one-particle irreducible (LPI) diagram (i.e., a diagram that cannot 
be made disconnected by cutting only one line). Let EB and E, be the num- 
bers of external boson and fermion lines, IB and IP the numbers of internal 
boson and fermion lines, ni the number of vertices of the ith type. Then 

Ee+21B=&bi, 
i 

(3.2) 

EF t2$ =CH(.f;:. (3-3) 
i 

The superficial degree of divergence of P is the degree of divergence one 
would naively guess by counting the powers of momenta in the numerator and 
denominator of the Feynman integral. It is 

D(r)=&idit21,t31,-4V+4, 
i 

(3.4) 

.the last two terms arising from the fact that at each vertex there is a four-di- 
mensional delta function which allows one to express one four-momentum in 
terms of other momenta, except that one delta function expresses the conser- 
vation of external momenta. Making use of eqs. (3. I), (3.2) and (3.3), we can 
write eq. (3.4) as 

D=&$-EB-,1EI:t4, (3.5) 
i 

or 

DtEBt;EF-4=&$.. (3.6) 
i 

The purpose of renormalization theory is to give a definition of the finite 
part of the Feynman integral corresponding to T’, 

Fr = jl; j-dkl . . . dk, Ir 9 (3.7) 
+ 

where I, is a product of propagators AF and vertices P, 
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(3.8) 

The finite part of F, will be denoted by J, and written 

Jr = f$ Jdkl . . . dkLR, . 
*+ 

(3.9) 

We shall describe Bogoiiubov’s prescription of constructing R, from I,. 
Let us first consider a simple case, in which r is primitively divergent. The 

diagram I’ is primitively divergent if it is proper (i.e., IPI), superficially diver- 
gent (i.e., D(F) 2 0) and becomes convergent if any line is broken up. In this 
case, we may use the original prescription of Dyson. We write 

Jr = jdkl . . . dkL(l -t’&. , 

i.e., 

R, =(I -t’)& . 

The operation t r must be defined to cancel the infinity in J,. Jr. is a function 
of EF t EB - 1 = E - 1 external momenta pl, . . . , pEeI, 

The operation (1 - tr) onfis defined by subtracting fromf the first D(T’) + 1 
terms in a Taylor expansion about pi = 0, 

O(P1, .*- , P&q) =f(O, -0- > 0) + *-* (3.10) 

E-1 

) ’ id v 

where (I = D(r). The operation (I - I r, amounts to making subtractions in 
the integrand I,, the number of subtractions being determined by the super- 
ficial degree of divergence of the integral. 

Some more definitions:,A renormalization part is a proper diagram which 
is superficially divergent (D > 0). Two diagrams (subdiagrams) are disjoint, 
y1 n y2 # 4 if they have no lines or vertices in common. Let (7, 9 . . . , yC} be a 
set of mutually disjoint connected subdiagrams of r. Then 
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is defined by contracting each 7 to a point and assigning the value 1 to the 
corresponding vertex. 

We are now in a position to describe Bogoliubov’sR operation: 
(i) if F is not a renormalization part (i.e., D(r) Q  -l)? 

R,=R,, 

(ii) if r is a renormalization part (D(7) > 0), 

R, ~(1 -tr)&, 

where RF is defined as 

(3.11) 

(3.12) 

(3.13) 

and Or = -PET, Ehere the sum is over all possible different sets of (7i). 
This definition of R,. in terms OCR? appears to be recursive; in perturbation 
theory there is no problem; the R, appearing in the definition of Rr. is neces- 
sarily of lower order. 

It is possible to “solve” eq. (3.13). We refer the interested reader to Zim- 
mermann’s lectures and merely present the result. Again we need some more 
definitions before we can do this:Two diagrams 71 and 72 are said to over- 
lap, 71 0 72, if none of the following holds: 

A P-forest II is a hierarchy of subdiagrams satisfying (a)-(c) below: 
(a) elements of U are renormalization parts;(b) any two elements of U, 7’ and 
7n are non-overlapping; (c) U may be empty. A r-forest U is futl or normal re- 
spectively depending on whether U contains r itself or not. The theorem due 
to Zimmermann is 

(3.14) 

where I; extends ovcc all possible (full, normal and empty) r forests, and in 
the product [I(-IX) the factors are ordered such that th stands to the left of 
t” if h > u. If h f? (I = 9, the order is irrelevant. A simple example is in order. 
Consider the diagram in fig. 3.1. The forests are I$ (empty); 71 (full); 72 (nor- 
mal); 71,~~ (full). Eq. (3.14) can be written in this case as 
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- -----1 
.( r-7 i Q I I 
I 

‘ -; Ql 
i Y, 

: - --A 

Fig. 3.1. Example of the BPHZ definition of subdiagrams in a particular contribution to 
the four-point function in a Aa4 coupling theory. 

R, = (1 - t’: - t’fz t PI t’YZ)lr = (1 - tYl)(l - tr2)Zr . 

Note that in the BPH program, the R-operation is performed with respect 
to subdiagrams which consists of vertices,and all propagators in I? which con- 
nect these vertices. I3y the BPH defmition, the subdiagram y2 above does not 
contain renormalization parts other than itself and in this sense the present 
treatment differs from Salam’s discussion. 

In formulating the BPH theorem it is necessary first to reguIarize the prop- 
agators in cq. (3.9) hy some device such as 

A&J) re; A&J;~, 4 = -i l da exp[ia(p* - m2 tie)] , 
I 

and define I,$-, E) as in eq. (3.9) in terms of A&, E), and then construct 
R,(r, E) by the R-operation. The BPH theorem states that R, exists as Y-+ 0 
and E -+ O+, as a boundary value of an analytic function in the external mo 
ments. Another theorem, the proof of which can be found in the book by 
Bogoliubov and Shirkov, sect. 26, and which is combinatoric in nature, states 
that the subtractions implied by the (1 - tr) prescription in the R-operation 
can be formally implemented by adding counterterms in the Lagrangian. 

A theory which has a finite number of renormalization parts is called renor- 
malizable. A theory in which all 6i are less than, or equal to zero is renormaliz- 
able. In this case the index of a subtraction term in the R-operation is bounded 
byD+En +&!+- 4 which is at most equal to zero by eq. (3.5). In such a the- 
ory, only a finite number of renormalization counterterms to the Lagrangian 
suffice to implement the R-operation. 

3.3. The regularization scheme of ‘t Hooft and Veltman 

Kecently, ‘t Hooft and Veltman proposed a scheme for reguIarizing Feyn- 



PUB-76/34-THY 

100 B. IV. Lee 

man integrals which preserves various symmetries of the underlying Lagran- 
gian. This method is applicable to electrodynamics, and non-Abelian gauge 
theories, and depends on the idea of analytic continuation of Feynman inte- 
grals in the number of space-time dimensions. The critical observations here 
are that the global or local symmetries of these theories are independent of 
space-time dimensions, and that Feynman integrals are convergent for suff-- 
cien tly small, or complex IV, where N is the “complex dimension” of space- 
time. 

Let us first review the nature of ultraviolet divergence of a Feynman dia- 
gram. For this purpose, it is convenient to parametrize the propagators as 

A,(p2) = $ i dat exp[iol(p2 - nz2 + ie)] . 
0 

(3.15). 

Making use of this representation, we can write a typical Feynman integral as 

X exp {i C ai((7i2 - .rf + ie)} , 
i 

(3.16) 

where I is the number of in ternal propagators in r, L the number of loops, and 
1,) . . . , 1, may take any values from I to L. The momentum qi carried by the 
jth propagator is a linear function of loop momenta ki and external momenta 
p,nB The exponent on the right-hand side of eq. (3.16) can therefore be writ- 
ten as 

I I 
C a&qf- mf+ ie) = I 
i=l 

’ CkiAij(a)kj t i 
i,i 

c ki Bi,(a)p, - 7 “i(mf - ie) 
, 
m 

+kT+ktk-B*p- C c+(mf - ie) , 

where k is a column matrix with entries which are four-vectors. The matrices 
A and B are homogeneous functions of fi?st degree in CY’S, and A is symmetric. 
Ubon translating the integration variables 

k+k’=k tA+Bp 
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and diagonalizing the matrix A by an orthonormal transformation on k’, we 
can perform the loop integrations over ki in eq. (3.16). The result is a sum 
over terms each of which has the form 

X %+-~[~p~C(or)~p t C c+(rnf - if)]}, 
i 

(3.17) 

where TX/I . . . v is a tensor, typically a product of gP09s, Ai is the ith eigen- 
value of the matrix A, and Si is a positive number which is determined by the 
tensorial structure of F,. Note that Ai is homogeneous of first degree in 
ois. The matrix C is 

C= BTA-‘B 

and is also a homogeneous function of first degree in [Y’S In this parametriza- 
tion, the ultraviolet divergences of the integral appear as the singularities of 
the integrand on the right-hand side of eq. (3.17) arising from the vanishing of 
some factors IIi[Ai(~)JSi as some or all (Y’S approach to zero in certain orders, 
for example, 

ar, car2 <...<iY 
‘J 

, 

where (rl, r2 , . . . , rJ) is a permutation of (1, 2, *.. , I). See, for instance, a more 
detailed and careful discussion of Hepp. 

The ‘t Hooft-Veltman regularization consists in defining the integral F, in 
n dimensions, n > 4 (one-time and (II - I)-space dimensions) while keeping 
external momenta and polarization vectors in the first four dimensions (i.e., 
in the physical space), performing the ?I - 4 dimensional integrals in the space 
orthogonal to the physical space, and then continuing the result in ?z. (For sin- 
gle-loop graphs one may perform all n integrations together.) For sufficiently 
small n, or complex n, the subsequent four-dimensional integrations are con- 
vergent. 

To see how it works, consider the integral 
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X n (kd * el)exp[i cc-+($ - rnf + if)], 
i 

(3.18) 

where, now, the ki are n-dimensional vectors. As before we can express the qi 
as linear functions of the kj and the external momenta pi, where the pi have 
only first four-component non-vanishing. From now, we shall denote an n-di- 
mensional vector by (k,K) where k^ is the projection of k onto the physical A 
space-time and K = k - k. Thus, p = ($, 0). Eq. (3.18) may be written as a sum 
of terms of the form 

(3.19) 

The integrals over kj can tie performed immediately, using the formulas 

s d”-4KK h’ 
% Q2 

. . . K 42r exp(-jA K2) 

)( (jA)-n/2+2-r , 

where the summation is over the elements u of the symmetric group on 2~ ob- 
jects (aI, ‘~2, . . . , a>), and 

%% =n-4. 

Thus F, of eq. (3.19) will have the form 
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where f(n) is a polynomial in n and ri is a non-negative integer depending on 
the structure of II K, - K, in eq. (3.19). For sufficiently small n < 4, the sin- 
gularities of the integrand as some or all 0;‘s go to zero disappear. 

The reasons this regularization preserves the Ward-Takahashi identities of 
the kind which will be discussed are, firstly, that the vector manipulations 
such as 

k'"(2p +q = [(p +k)S- m2] -(p2- m2), 

or partial fractioning of a product of two propagators, which are necessary to 
verify these identities “by hand”, are valid in any dimensions, and, secondly, 
that the shifts of integration variables, dangerouswhen integrals are divergent, 
are justified for small enough, or complex n, since the integral in question is 
convergent. 

The divergence in the original integral is manifested in the poles of Fr(fz) 
at n = 4. These poles are removed by the R-operation, so that Jr(n) as defined 
by the R-operation is finite and well-defined as IZ + 4. Actually, to our know- 
ledge the proof of this has not appeared in the literature, except for the origi- 
nal discussion of ‘t Hooft and Veltman. Hepp’s proof, for example, does not 
really apply here, since the analytical discussion of Hepp is not tailored for 
this kind of regularization. However, the argument of ‘t Hooft and Veltman is 
sufficiently convincing and we have no reason to believe why a suitable modi- 
ftcation of Hepp’s proof, for example, of the BPHZ theorem should not go 
through with the dimensional regularization. 

The above discussion is fine for theories with bosons only. When there are 
fermions in the theory, a complication may arise. This has to do with the oc- 
currence of the so-called Adler-Bell-Jackiw anomalies. The subject of anoma- 
lies in Ward-Takahashi identities has been discussed thoroughly in two excel- 
lent lectures by Adler, and by Jackiw, and we shall not go into any further de- 
tails here. In short, the Adler-Bell-Jackiw anomalies may occur when the veri- 
fication of certain Ward-Takahashi identities depends on the algebra of Dirac 
gamma matrices with y5, such as -y,, y5 + y5 7, =.O. Typically, this happens 
when a proper vertex involving an odd number of axial vector currents cannot 
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be regularized in a way that preserves all the Ward-Takahashi identities on such 
a vertex, and as a consequence some of the Ward-Takahashi identities have to 
be broken. The occurrence of these anomalies is not a metter of not being 
clever enough to ilevise a proper regularization scheme: for certain models 
such a scheme is impossible to devise. The dimensional regularization does not 
help in such a case, due to the fact that 75 and the completely antisymmetric 
tensor density ehPyp are unique to four dimensions and do not allow a logical- 
ly consistent generalization to H dimensions. When there are anomalies in a 
spontaneously broken gauge theory, the unitarity of the S-matrix is in jeopardy 
since, as we shall see, the unitarity of the S-matrix, i.e., cancellation of spuri- 
ous singularities introduced by a particular choice of gauge is inferred from 
the Ward-Takahashi identities. Gross and Jackiw have shown that, in an Abe- 
lian gauge theory, thc.occurrence of anomalies runs afoul of the dual require- 
ments of’unitarity and renormalizability of the theory. 

Thus, a satisfactory theory should be free of anomalies. Fortunately, it is 
possible to construct models which are anomaly-free, by a judicious choice of 
fermion fields to be included in the model. There are two ‘lemmas” which 
make the above assertion possible. One is that the anomalies are not “renor- 
mafized”, which in particular means that the absence of anomalies in lowest 
order insures their absence to all orders. This was shown by Adler and Bardeen 
in the context of an SU(3) version of the u-model, and by Bardeen in a more 
general context which encompasses non-Abelian gauge theories. The second is 
the observation that all anomalies are related; in particular, if the simplest 
anomaly involving the vertex of three currents is absent in a model, so are all 
other anomalies. This can be inferred from an explicit construction of all anom- 
alies by Bardeen, or from a more general and elegant argument of Wess and 
Zumino. 

Let us conclude with a simple example of dimensional regularization: the 
vacuum pdarization in scalar electrodynamics. The Lagrangian is 

and the relevant vertices are shown in fig. 3.2. There are two diagrams which 
contribute to the vacuum polarization, shown in fig. 3.3. The sum of these 
contributions is 

d”k 
Z=e2j- 

1t2k+?4,(2k +d, - 2((k +d2 -p2kw,] 
pv 

(3.20) 

We use the exponential parametrization of the propagators to obtain 
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Fig. 3.2. Photon-scalar meson vertices in charged scalar electrodynamics. 

k 

Fig. 3.3. Second order vacuum polarization diagrams in charged scalar electrodynamics. 

X [Ox: +dp +P)” - 2((k +pj2 -p2jgpv]. (3.21) 

The exponent is proportional to 

(CY + P)k2 + 2k . pa + ap2 - (a + /.I)(/.? - ie) 

so we may write 

= -e2bgp, - p2g,,) r da i $3 (s)2j E 0 0 nn 
Xexpi (a+/3)k2+ 

i 
SP2 -(cY+p)(p2-ie) 1 
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The first term is explicitly gauge invariant and only logarithmicaffy divergent, 
so that a subtraction will make it convergent. it is the second term that re- 
quires a careful handling. We need the formulas 

d”k - exp(iAk2) = 
Gw (2&Q” ’ 

b k2 exp(iXk2) = $ (-in) i exp 
7 / 
4’““), 

(2&X)” 

s 
(3.23) 

so that tfie second term, 12, is 

X exp i 
I 

-$p2~-(atp)(&ie) A.- 
11 (a+P) 

x (i(l -in)-[-.&+(otp)p~)’ 

= -2ie 2 e iml4 
g -----ldadfl6(1 -u-~jj~ei~l”ap’-P2f”l 

pv (2&r)” 0 if 

x [il-l(1 - $2) + i(orpp2 -/.l’)] . (3.24) 
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For sufficiently small n, n < 2, the A-integration is convergent, and 

- dh J ,ik(A+iel(I -2’ +i~) 
o hrtl2-I 

= p dh -& {h’-“/2 exp[iX(A t ic)]) = 0. 
0 
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(3.25) 

So the dimensional regularization gives the gauge invariant result, 

12=0. 

3.4. Problem 

Repeat the vacuum polarization calculation in spinor electrodynamics using 
the dimensional regularization. 

4. The Ward-Takahashi identities 

4.1. Notations 

One of the problems in discussing gauge theories is that notations will get 
cumbersome if we are to put explicitly space-time variables, Lorenb indices 
and group representation indices. We will therefore use a highly compact no- 
tation. For simplicity in notation, we will assume that the gauge group in 
question is a simple Lie group. Extension to a product of simple Lie groups, 
such as SU(2) X U(I), is not too difficult. 

We will agree to denote all fields by r&. Again for simplicity in notation we 
will assume #j to be bosons. Inclusion of fermions does not present any diff- 
culty in our discussions, but we will have to be m indful of their anticommut- 
ing nature. Thus, for the gauge field A;(x) i stands for the group index a, the 
Lorentz index 1-1, and the space-time variable x. Summation and integration 
over repeated indices will be understood. Thus 

(piz =sd4x q A;(x)A~~(x) + 0.. , (4-I) 

where the dotted portion includes contribution from other species of fields. 
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The infinitesimal local gauge transformation may be written as 

l#Jp$;=$it(A; tt~~j)ea, (4.2) 

where O. = 8,(x,) is the space-time dependent parameter of the group G. We 
choose @i to be real, SO that 

t; = ~“‘(xa - xp4(xn - Xi) (4.3) 

is real antisymmetric, where 7; is the representation of the generator La of G 
in the basis &. The’inhomogeneous term q is non-vanishing only for the 
gauge fields 

hi” =$ars4(xi - xa)ija , b for & = A:@$ 

= 0 otherwise. 

We shall also define 

Notice that 

(4.4) 

(4.5) 

where 

le f =pw(xo - Xb)64(Xa - xc) , 

$g - <gk =f”“‘t; s (4.6) 

pk being the structure constant of G. The proof of eq. (4.5) is simple: we 
will just show 

Since I$!’ is non-vanishing only when j refers to a gauge field, let us write 
i = (CJA, Xi), i = (d, V, xi>. Then 

t; = gpy.pd 64(Xi - xa)S4(xa - Xi) , 
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g(t; ij! - t; A.) =fabcj-d4x E”(xa - x)S4(x - xi) -& s4(x - xb) 

t S4(Xb - x)S4(x - Xi)-& S4(x - xa) 1 
=pbcld4x S4(x - xi) a [“‘(x~ - x)S4(x - xb)] 

i3Xfl 

=pbbe &sd4x S4(x - xj)b4(x -mx,)S4(x - xb) , 

which is equal tog times the right-hand side of eq. (4.5). 
The gauge invariance of the action can be stated in a compact form, 

(4.7) 

The linear gauge condition we discussed in lecture 2 may be written as 

Fa [@I = fai @ i 3 (4-g) 

where 

fai = a; for Qi = A$xi) , 

a; = tPbap64(xi - xa) . 

En this notation, the effective action is written as 

f&-jt’h f>d = s[@l -&F; [@I + ‘$Mab [@hb 3 

with 

(4.9) 

(4.10) 

(43) 

4.2. Becchi-Rouet-Stora transformation 

The WT identities for gauge theories have been derived in a number of dif- 
ferent ways. The most convenient way that I know of is to consider the re- 
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sponse of the effective action, eq. (4.1 l), to the so-called Becchi, Rouet, 
Stora (BRS) transformation. It is a global transformation of anticommuting 
type which leaves the effective action invariant. Here 1 shall follow a very ele- 
gant discussion of Zinn-Justin given at the Bonn Summer Institute in 1974. 

The BRS transformation for non-Abelian gauge theory is defined as 

“$=Di”QX, (4.13a) 

when? 6 X is an anticommuting constant. Note that if we identify O. = T)~S h, 
we see immediately that the action S[$] is invariant under (4.13a). There are 
two important properties of the BRS transformation which we shall describe 
in turn. 

(i) The transfonnatiorrs on 9t and pa are nilpotent, i.e., 

s2ei=0, 

s2qa= 0. 

Proof: Eq. (4.14) follows from 

“(D;Q=O. 

Indeed 

(4.14) 

(4.15) 

(4.16) 

Since ?jO and vb anticommute, the coefficient of vaqn in the first term on the 
right-hand side may be antisymmetrized with respect to a and b. It vanishes as 
a consequence of eq. (4.5). 

To show eq. (4.15), we note that 

(4. I 7) 

by the Jacobi identity. QED. 
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(iij The BRS transformations leave the effective action SEn of eq. 14. II) 
invariant 

Proof: As noted above S[$] is invariant under eq. (4.13a). We further note 
that 

s<Mab [@h&lb) = 0. (4.18) 

by eq. (4.16) and the definition of Mab, eq. (4.12). Thus 

=~FaMabqbsA-~Fa~D;qb6hi0 
P 

(4.19) 

by the definition of Mab, eq. (4.12). 
For,later use, we remark finally that the metric [d&dta dn,] is invariant 

under the BRS transformation of eqs. (4.13). I want you to verify it. 

4.3. The Ward-Takahashi identities for the generating functio?zal of Green 
functions 

We will first derive the Ward-Takahashi identity satisfied by lV,[JI of 
eq. (2.3 l), 

Z,[~~eiWr;I’l=NS[d~d5:dq]exp{id,ff[~,~,q]+iS-~i). (4.20) 

We first note that, according to the rule of integration over anticommuting 
numbers 

(4.21) 

we have 

s [WdE dq] 4‘, exp CiSeff Ml + iJi 3> = 0 , (4.22) 

because Se-r contains t and q only bilinearly. In eq. (4.22) we make a change 
of variables according to the BRS transformations (4.13). Since a change of 
integration variables does not change the value of an integral, we have 

O=j[d@d[dq] -~a[$j+iJiE,D,!‘[@]qb 
I 

exp(iS,ff+iJi$i) I (4.23) 
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Eq. (4.23) is the WT identity as first derived by Slavnov and Taylor. We can 
rewrite it in a differential form involvingZF. We define 

(ZFlba z Ni s Id&Wtl Ca rib exp We, + iJ&$ e (4.24) 

It is the ghost propagator in the presence of external sources Ji- It satisfies 

M [ 1 Ls (zj& = tinei+ . ab iSJ (4.25) 

I wIl1 leave the derivation of eq. (4.25) as arrexercise. Eq. (4.23) can be writ- 
ten as 

aFa +& c 1 ZF[J] - J,D,!’ +& [ 1 tzj7)ba = o * (4.26) 

Eq. (4.26) is in the form written down by &n-Justin and Lee. It is the WT 
identity for the generating functional of Green functions, and as such it is 
rather cumbersome for the discussion of renormaiizability, since, as we have 
seen in lecture 3, the renormalization procedure is phrased in terms of (single- 
particle irreducible) proper vertices. Nevertheless, eq. (4.26) was used to de- 
duce “by hand” consequences of gauge symmetry or renormalization parts by 
Zinn-Justin and myself. We do not have to do this, since we know better now. 
Eq. (4.26) will be useful in discussing the unitarity of the S-matrix later, how- 
ever. 

‘4.4. The Wurd-Takuhushi identities: inclusion of ghost sources 

To discuss renormalization of gauge theories, we have to consider proper 
vertices some of whose external lines are ghosts. For this reason, the ghost 
fields 5 and q should have their own sources. We therefore return to eq. (2.34), 

X exp[iCQ#, t, 4 + U + @a + J#,.i,l . (4.27) 

For the ensuing discussion, it is more convenient to consider an object 

(4.28) 

and define 
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(4.29) 

In eq. (4.28), Ki and -La are sources for the composite operators Dffr$]qa and 
$?f,a Q, Q, respectively. It follows from eqs. (4.16) and (4.17) that Z is in- 
variant under the BRS transformations (4.13). Note further that Ki is of anti- 
commuting type* and 

The invariance of Z is expressed as 

or 

We need one more equation, 

g=ftig. 
i 

(4.30) 

(4.3 1) 

(4.32) 

(4.33) 

Let us examine the consequences of eqs. (4.32) and (4.33). We perform a 
change of variables 

(4.34a) 

(4.34b) 

&$=-iFa& (4.34c) 

Eq. (4.32) tells us that Z is invariant under such a transformation, and the in- 
tegration measure [d&d$dp] is also, thanks to 
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A?&(-) 
“qiKi~ ’ 

B.W. Lee 

Thus, the change of variables (4.34) in eq. (4.29) leads to 

X exp[i{X + t - /I + /3t - 9 +Jr.$>] = 0. 

Next, the equation of motion for n is 

Combining eqs. (4.33) and (4.37), we obtain 

(4.3%) 

(4.35b) 

(4.36) 

(4.3 7) 

(4.38) 

Eqs. (4.36) and (4.38) are the basis for deriving the WT identity for the 
generating functional of proper vertices. 

4.5. The Ward-Takahashi identities for the generating functional of proper 
vertices 

The generating functional of proper vertices is obtained from IV, 

W=-itnZ, 

by a Legendre transformation. We define 

(4.39a) 

(4.39b) 
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(4.39c) 

where we have used the same symbols for the expectation values of fields as 
for the integration variables. The generating functional for proper vertices is 

As usual, we have the relations dual to eqs. (4.39), 

P-C?. (4.40) 

(4.41a) 

(4.41b) 

(4.41c) 

It is easy to verify that if Wand F depend on parameters Q, such as K or L 
in our case, which arc not involved in the Legendre transformation, they satis- 
f-Y 

From eqs. (4.36) and (4.38) we can derive two equations satisfied by F, 

(4.42) 

(4.43) 

(4.44) 

It is important to observe the correspondence between eqs. (4.32) and (4.33), 
and eqs. (4.43) and (4.44). 

If we now define 

(4.45) 
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f&a%,=%. 
a 

(4.47) 

The functional r carries a net ghost number zero, where we define the 
ghost number Np as 

N&II = 1 3 NJK]=-1 s 

N,LEl = -1, NJL] =-2, 

NJ4 =o. 

Clearly I’ may be expanded in terms of the ghost number carrying fields: 

Substituting the expression (4.48) in eqs. (4.46) and (4.47), differentiating 
with respect to Q, and setting all ghost number carrying fields equal to zero, 
we obtain 

(4.49) 

(4= 50) 

These are the equations first derived by me from (4.26) by a complicated 
functional manipulation. These are the fully dressed versions of eqs. (4.7) and 
(4.12), 
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4.6. Prob Iems 

4.6.1. Convince yourself that the measure [dddldq] is invariant under the 
BRS transformation. 

4.6.2. Show that 

Prove eq. (4.25). 

4.6.3. Show that 

dci ac Af(c)=O, i not summed, 
i 

where ci is an anticommuting number. Prove eq. (4.37). 

4.6.4. Derive the WT identity for Z[J, fl, $1, 

5. Renormalization of pure gauge theories 

5. I. Renormalization equation 

We are ready to discuss renormalization of non-Abelian gauge theories 
based on the WT identity for proper vertices derived in the last lecture. 

Let us recall that our Feynman integrals are regularized dimensionally so 
that for a suitably chosen n not equal to 4, all integrals are convergent. Thus, 
we can perform the Bogotiubov R-operation after the integral has been done, 
instead of making the subtraction of eq. (3.10) in the integrand as Zimmer- 
mann dictates. In fact this is the procedure used by Bogoliybov, Parasiuk and 
Hepp. Further, instead of making subtractions at pi = 0, we will choose a 
point where al1 momenta flowing into a renormalization part are Euclidian. 
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For a vertex with II external lines, this point may be chosen to be --pi” = a2, 
pi - pi = c&z - I). Th is is to avoid infrared divergences. At this point the 
square of a sum of any subset of momenta is always negative, so that the am- 
plitude is rea1 and free of singularities. 

For simplicity we first consider a pure gauge’theory. Inclusion of matter 
fields, such as scalar and spinor with renormalizable interactions present no 
difficulty. In particular, coupling of gauge fields with scalar mesons will be 
treated in chapter 6. 

We may write down the proper vertex as a sum of terms, each being a pro- 
duct of a scalar function of external momenta and a tensor covariant, which 
is a poiynomial in the components of external momenta carrying available 
Lore& indices. All renormalization parts in this theory have eitherD = 0 or 1. 
The self-mass of a gauge boson is purely transverse as we shall see, so that it 
also has effectively D = 0. Thus, only the scalar functions associated with ten- 
sor covatiants of lowest order are divergent as n + 4. (Note also that vertices 
involving external ghost Iines have lower superficial degrees of divergence than 
simple power counting indicates. This is because .C, always appears as 8 E, &,.) 

The basic proposition on renormalization of a gauge theory is the following. 
If we scale fields and the coupling constant according to 

Q1 i = z’/2(e)@’ i’ 

r; a = S2(e)g’ a’ 

K. = .i?/2(~)K’ I i’ 

L a = zqE)L' a’ 

a = Z(E)c? , 

g= X(e). g’ 
+z(e)z1’2(e) ’ 

(5.1) 

where e = n - 4 is the’regularization parameter, and choose Z(e), X(E) and 
Z(e) appropriately, then 

is a finite (that is, as e = D - 4 4 0) functional of its arguments $‘, 5’. $, K’, 
L’ and or’. Under the renormalization transformation of (5.1). eqs. (4.45) and 
(4.46) become 
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We will expand loopwise, 

We have 

Suppose that our basic proposition is true up to the (n - 1) loop appioxima- 
tion. That is, up to this order, all divergences are removed by rescahg OF 
fields and parameters as in eq. (5.1). We suppose that we have determined the 
renormalization constants up to this order, 

(x)n-, = 1 +X(r) + .** + X(n-1) " P-7) 

We have to show that the divergences in the n-loop approximation are also 
removed by suitably chosen z,r , 2n and x,r. 

Following Zinn-Justin, we introduce the symbol 

where the superscript r denotes here the quantities rcnormalized up to the 
(rr - 1) loop approximation. We can write eq. (5.8) as 

with 

(5.10) 
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The right-hand side of eq. (5.9) involves only quantities with less than II loops, 
it is finite by the induction hypothesis. Further, divergences in subdiagrams of 
r(,, are removed by renormalizations up to (n - 1) loops. Thus, the only re- 
maining divergences in r(,l) are the overall ones. Let us denote by Odiv the 
divergent part. If we adjust finite parts of I& appropriately, we have 

(5. Ii) 

(5.12) 

5.2. Solution to renormalization equation 

The divergent part off&) is a solution of the functional differential equa- 
tions (5.1 I), (X1.2). We recall that 

where thk functional operator 9 

9= clot61 3 

is given by 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17a) 

(5.17b) 
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From now on, for the interest of notational economy, we will drop the super- 
script r, until further notice. 

An important aid in solving eq. (5.14) is the observation that 

p=0. (5.18) 

We will prove this in steps. First, we verify by direct computation that 

$g=o, 

90 
=D;qa+f q q 6. ahc b c&qa (5.19) 

i 
Eq. (5.19) is a direct consequence of eqs. (5.16), (5.17) that the BRS transfor- 
mation on 4 and qa is nilpotent. Next we note that 

(5.20) 

where we have used the fact that 

(5.21) 

Direct computations yield 

(5.22) 

6 ‘30 s qo) s *r(o) SD; 6 r(()) 
“3 50, =“3 - = &K@. 1 qa63 “3’ 



PUB-76/34-THY 

122 B.IK Lee 

“Qo s 50) 
- 

s2r(0) s r(o) s 2 r(o) 

s% 
qo) = - ( ‘Qf. 

-++---- 
sKjs’tl, sV* 6L*6Qa 1 

Thus 

which, proves eq. (5.18). 
The fact that 9 is nifpotent means that, in general, 99 for arbitrary 

9 = Y(i$, & 1, K, L) is a solutibn of eq. (5.14) 

8(sw).= 0 * (5.23) 

The question is whether there are other solutions not of the form ~7. This 
question also arises in renormalization of gauge invariant operators, and has 
been studied, in particular, by Kluberg-Stern and Zuber. They also advanced a 
conjecture: they suggested that the general solution to eq. (5.14) is of the 
form 

W(‘,)P” =GM+99[$,t,tl,KLl, 

where G[$] is a gauge invariant functional, 

(5.24) 

Recently, Jogtekar and I were able to prove this, mostly by the effort of the 
first author. The proof is tedious, and I believe that it can be improved as to 
rigor, elegance and length. For this reason, I will not present the proof. It is 
easy to see that the form (5.24) satisfies eq. (5.14) and that G[$] of eq. (5.25) 
is not expressible as gS, in this case at least. It is the completeness of eq. 
(5.24) which requires proof. 

Eq. (5.15) [or (5.4)] is immediately solved. It means that 

r&J fh Es ~5 K, Ll= r&l [A O,V, Kj f a;$, L] + ‘jQ’[ti* -5 V, L.1, (5.26) 

where Q’ is transverse: 3% Qj = 0 - 
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The quantity (l&} div is a local functional of its arguments. If we asign to 
K and L the dimensions D(K) = 2 and D(L) = 2, then Z. has the uniform di- 
nmsion 0, and SO does Irfn)ldiv. It has Ng [r’fil,] = O. Since Ng [ 91 = t.1, it 
follows that iVg [ 9]= -1 in eq. (5.24). In order that the right-hand side of 
eq. (5.24) is local, both 9 and Qmust be separately local. The most general 
form of {r{,r)}div satisfying the above requirements is 

where cr, p, y are in general divergent, i.e., e-dependent,‘constants. Using the 
explicit form of 9, eqs. (5.17) we can write 

(5.28) 

In eq. (5.27) G[$] is equal to S[I$). This is so because the action is the only 
local functional of dimension four which satisfies eq. (5.25). 

Because 

Thus, combining eqs. (5.28), (5.29), we obtain 

(5.29) 

(5.30) 

Recall that in cq. (5.30) d, f, 77, K, L and g are renormalized quantities up to 
the (n - 1) loop approximagon. We shall denote them by (#),-t, etc. 

If we now define (Z),, (Z),, (X), by 
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<a, = (+Q-l + qn) 5 etc. , 

and renormalize the fields and coupling constant according to 

(5.3 I) 

etc. , (5.32) 

(5.33) 

and choose +), :(,+ xtn) to be 

%) = -4 a * lw) , 

?(a = 37 + IN4 9 

%) - q,z) - :2(n) = 2+j, (5.34) 

then {~fnj)drv is eliminated: I’&, is a finite functional in terms of (@j,,, . . . I 
and ($),,. Furthermore, since (@), = (Zji’2$, . . . , eqs. (5.3), (5.4) are ako 
true for the newly renormnlized quantities. This completes the induction. 

Note further that 

(5.35) 

is finite. The renormalized field $* transforms under the gauge transformation 
as 

6. Renormalization of theories with spontaneously broken symmetry 

6.1. hclusion of scalar fields 

In chapter 5, we detailed the renorrhalization of pure gauge theories. Let us 
consider now a theory of gauge bosons and scalar mesons. Let 

!4j = (.qxj, s&)) 9 
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where s, are scalar mesons, and let 

be the vector which defies the gauge. The action for the scalar fields is of the 
form 

where (Ds), is the covariant derivative acting on S, V(s) is a G-invariant quar- 
tic polynomial in s and of dimension at most zero. 

We shall write 

(6.2) 

[W, ta ] = [6M, t”] = 0, (6.3) 

where M& is the renormalize$mass matrix for the scalar mesons. We shah as- 
.sume for the moment that Mr is a positive semi-definite matrix. 

Let us discuss renormalization. Almost everything we discussed in the last 
section holds true. In particular we have 

WC n ,ldiv = G [$I + 9 W> E, rl, K t3 , 

where we have written @i = {A,, sa) and Ki = {K,, &},A, being the gauge 
fields, A, = A;(x), t = (a, p, x). Now we have 

(6.4) 

where Y’ is a G-invariant quartic polynomial in s. This term is eliminated by 
renormalizations of coupling constants appearing in V(s). 9 takes the form 
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where d$ is a G-covariant coefficient. (It could be i$, or something else, such 
as the d-type coupling in SU(3), for example.) This gives 

{r&p= & +pl) A& +ia$] -‘a 1 [ a 
t a 2 Gag 

where 

These divergences are eliminated if we renormalize A, &q, K,, La and g as be- 
fore and 

%! 
= 3/z 9 

s a’ 
K - &. l12p 

Q- z ( > 
p = -$- 1’2(c3r , 

a= u s ( 1 s 

which leaves 

invariant, and shift the si fields by 

s; = Sk - u,w P 

and choose 
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An important lesson to be learned here is that in a general linear gauge, scalar 
fields can develop gauge-dependent vacuum expectation values, which are in- 
nocuous from the renormalization point of view. 

6.2. Spontaneously broken gauge symmetry 

Let us consider the case where M’ is not positive semi-definite. It is by now 
well known that under such circumstances spontaneous breakdown of the 
gauge symmetry takes place, and some of the scaIar fields and some of the 
(transverse).gauge bosons combine to form massive vector bosons. We will give 
here a very brief discussion of the Higgs phenomenon. 

We define V0 by 

If M’ is not positive semi-definite, So = 0 is no longer a minimum of the po- 
tential V,. Let sa = 11, be the absolute minimum of Vo, 

(6.7) 

“2Vo 

q$sp s=u 
= ‘Nl$ , CR,, positive definite. 

G-invariance of the potential Vo is expressed as 

s ta 6 Vo -=o. Q d 6s P 

Differentiating this with respect to s7 and setting s = U, and making use of 
eqs. (6.7), (63, we obtain 

(6.9) 

Therefore, there are as many eigenvectors corresponding to the eigenvalue 
zero as there are linearly independent vectors of the form C&U,. If the dimen- 
sion of G is N and the little group g which leaves u invariant has dimension m, 
there are iV - ~11 eigenvalues of 7K2 which vanish. 

For fltture use, it is useful to define a vector 1: by 
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where ~4; is to be defined. Since all representations, except the identity repre- 
sentation, of a Lie group are faithful, there are N - m independent vectors of 
this form. Now we define 

(6.10) 

This matrix is of a bloc; diagonal form; moreover if a or b refer to a generator 
of the little group g, (+)ab vanishes. Now form 

(6.11) 

This is a projection operator, P2 = P, onto the vector space spanned by vec- 
tors of the form t~pt$. This space is N - m dimensional, 

trP=N- tn. 

Eq. (6.9) may be written as 

We renormalizc the gauge fields, ghost fields and gauge coupling constant 
as before, and renormslize s, according to 

sa =Z’/J(s” +u’ a (Y a +su ) a 5 

and determine 6 U, = (6 t.ta)l + (6 I& t .._ by the condition that the diver- 
gences of the form -(6 S[$]/S s,)A(e)u, in the n-loop approxkation be can- 
celled by the displacement of the renormalized fields s:, (6 u&. (See the dis- 
cussion in subsect. 6.1.) The renormalized vacuum expectation value z& is to 
be determined by the condition 

s2rr 
6 f#J;s 4; I #=u’ 

positive semi-definite . 
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We equate the gauge fixing term C,!J to (numerically) 

Then the terms in the action quadratic in renormalized fields and coupling 
constants (excluding renormaiization counter terms) are 

where we have suppressed the superscript r altogether. The propagators for 
the gauge bosom, scalars and ghost fields are, respectively, 

[Aj$“(k,c~)]~~=~ ( ’ ) , 
k2-p2+ie cb 

which can be written, in a representation in which p2 is block diagonal, as 

01 

[&12a) 

the latter holding for a, b being one of the m indices corresponding to genera- 
tors of the little group g; 

[AF(k2s a)], = (1 -J’lq k2 ( - A2 + ,), 

tz~(~)ab(kl_:2+iQ)hlpe9 (6.12b) 
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tAdk2p a& = ( k2 _ b,z + , )., (6.12~) 

If the theory is to be sensible, and gauge invariant, then the poles whose 
locations depend on the gauge parameter LY cannot be physical, and the parti- 
cles corresponding to such poles must decouple from the Smatrix. If this is 
the case, as we shall show, then there are N - m massive vector bosons, m 
massless gauge bosons, and (N - m) less scalar bosons than we started out 
with. This is the Higgs phenomenon. 

is a theory of this kind renormalizable? The answer is yes, because the 
Feynman rules of the theory, including the propagators above are those of a 
renormalizable theory, and the WT identity, eq. (6.3), and the ensuing discus- 
sion in chapter 5 and subsect. 6.1 hold true whether or not#is positive def- 
inite. That is, by the methods discussed, we can construct a finite I” in this 
case also. The expansion coefficients of T” about r$: = uf, where 

62r’ 
6 46 (b; I Q=uZ positive definite, 

then are the reducible vertices of the renormalized theory. I shall not describe 
the details of the renormalization program since they have been described in 
many papers, most recently in my paper (ref. [SO]), but the principle involved 
should be clear. 

But an additional remark is in order: the divergent parts of various wave- 
function and coupling-constant renormalization constants are independent of 
MF. This has to do with the fact that these constants are at most logarithmi- 
cally divergent, and insertion of the scalar mass operators (whose dimension is 
2) renders them finite. For detailed arguments, see ref. [50]. 

6.3. Gauge indepeizdemze of the S-matrix 

What remains to be done is to demonstrate that the unphysical poles in the 
propagatorsin eq. (6.12). which depend on the parameter L\! and some of which 
correspond to negative metric particles, do not cause unwanted singularities in 
the renormalized Smatrix. We shall do this by proving that the renormalized 
S-matrix is independent of the gauge fixing parameter CX. To ensure that the S- 
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matrix is well-defined, I shall assume that after the spontaneous breakdown 
of gauge symmetry there is at most one massless gauge boson in the theory. 

Before proceeding to the proof, the following ihustration is useful. For 
simplicity let us consider a X@4 theory. The generating functional of Green 
functions is 

where 

What happens if we instead couple the external source to $J + @? We can write 
the generating functional as 

Z[iJ =~~[WJexpW[~l+ iit@ + d~~)l- 

We can express Z in terms of Z,, 

(6.15) 

where 

F(4) = c#J -)- (b3 . 

Let us consider a four-point function generated by Z[i], 

GJ1,2,3,4] =(-Q4 S4-mJ 
Sit lPSWA3)6jW - 

What eq. (6.16) tells us may be pictured as foliows: 

(6.16) 

where we have shown but a class of diagrams that emerge in the expansion of 
the right-hand side of eq. (6.16). The part of the diagram enclosed by a dotted 
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square is a Green function generated by ZO [q. Let us now consider the two 
point functions Aj and AJ generated by Z[j] and Zu [J], 

+ . ..a 

So, if we examine the propagators near p2.= pf, we find 

zi lim Ai = - 
P2+ P”-P,2 7 

where the ratio 

ZJ lim AJ=------- 
P2-$ P2 -$ 

u = (zj/zJ)1’2 

is given diagramma tically by 

0=1*-i- e+... 

The renormalized S-matrix is defined by 

S’(k,, . . . >=n 
k;-$ _ 

lim ----gyG(kl....), 
i=l k&,2 

(6.17) 

(6.18) 

(6.19) 

where G” is the momentum space Green function. Let us consider the unrenor- 
malized S-matrix defined from (?j, 

Si”(kl, ..e ) = n lim(kf - pz)Gj(kl, . . . ) . (6.20) 

Clearly only these diagrams Of ej in which there are poles in all momentum 
variables at $ will survive the amputation process. (In fig. 6.1, there are poles 
in k: and k: at cl,“.) Thus 

S;(kl, . . . ) = crN’2SJ(k, 9 a.. ) ) (6.2 1) 
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where N is the number of the external particle;. It follows from eqs. (6.1 Q- 
(6.21) that 

SpSfES’, (6.22) 

and we reach an impor tan t conclusion: if two Z’s differ only in the external 
source term, both of them yield the same renormalized S-matrix. 

We now come back to the original problem, and ask what happens to 
ZF [.Il if an infinitesimal change is made in F, 

We are dealing with unrenormalized but dimensionally regularized quantities 
in eq. (6.23). To first order in AF, we have 

Now, making use of the WT identity (5.23), 

s [&%dVl IF, - iJi~~D~[~]~~)exp{i~~~ +iJ&} = 0, 

we can write eq. (6.24) as 

Since 

:AF, [ 1 i& iJi=-.z, i 
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we obtain 

z F+AF - ‘F =iJiN s [dtdrld@Jexp{iSeK + iJ&.i, 

X G-iAFabPJ~a~~I~J~&~. 

But, eq. (6.25) means that to lowest order in AF, 

‘F+AF =fVj [d$dEdqJexp {is,, + iJiai} , 

where 

(6.25) 

(6.26) 

Thus, an ir@ itesimal change in the gauge condition corresponds to changing 
the source term by an infinitesimal amount. But we have already shown that 
the renormahzed S-matrix is invariant under such a change! Thus 

W lF+AF = W IF : (6.27) 

A few final remarks: (i) In’ the previous lectures when we discussed renor- 
malization, we defined the renormatization constants in respect to their diver- 
gent parts. The wave-function renormalization constants used in this lecture 
are defined by the on-shell condition (6.17). These two are related to each 
other by a finite mdtiplicative factor. To see this, observe that we can make 
the propagators finite by the renormalization counter terms defined in the 
ptevious lectures. The propagators so renormalized do not in general satisfy 
the on-shell condition 

hm Ak(p’) = L!-- 
P2-$ P”-P,2 ’ 

but a finite, final renormalization suffices to make them do so. (ii) We can de- 
fine the coupling constants to be the value of a relevant vertex when all physi- 
cal external lines are on mass shell. Then 
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