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ABSTRACT

The electromagnetic radiation from classical convection currents in
relativistic n-particle collisions is shown to vanish in certain kinematical
zones, due to the complete destructive interference of the classical radia-
tion patterns of the incoming and outgoing charged lines. We prove that
quantum tree photon amplitudes vanish in the same zones, at arbitrary phaton
momenta, including spin, seagull, and interpal line currents, provided only
that the electromagnetic couplings and any other derivative couplings are as
prescribed by renormalizable local gauge theory (spins < 1). In particular,
the existence of this new class of amplitude zeros requires the familiar gyro-
magnetic ratio value, g = 2, for all particles, The location of the zeros is
spin independent, depending only on the charges and momenta of the external
particles. Such null zones are the relativistic generalization of the well-
known absence of electric and magnetic dipole radiation for nonrelativistic
collisions involving particles with the same charge-to-mass ratio and g-factor.
The origin of zeros in reactions like u d >~ Wty is thus explained and exam-
ples with more particles are discussed. Conditions for the null zones to lie
in physical regions are egtablished. A new radlation representation, with the
zerog manifest and of practical utility independently of whether the null
zones are in physical regions is derived for the complete single-photon ampli-
tude in tree approximation, using a gauge-invariant vertex expansion stemming
from new internal-radiation decomposition identities. The question of whether
amplitudes with closed loops can vanish in null zones is addressed. A low-
energy theorem for general quantum amplitudes (including closed loops) is
found. Important relations between the photon couplings and Poincaré trans-
formations are discovered. The null zone and these relations are discussed
in terms of the Bargmann-Michel-Telegdi equation. The extension from photons
te general massless gauge bosons is carried out.
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I. INTRODUCTION

In this paper we describe a new general feature of gauge theories that
incorporate massless gauge fields: The existence of zones of null radia-
tion independent of spin.l Such null zones should be distinguished from
zeros in scattering amplitudes which are imposed, for example, by angular
momentum conservation. Here we present a theorem for a new type of zero
that can occur in gauge-theory tree-graph amplitudes for photeon production/

1

absorption involving any number of spin-0, spinn-a-, or spin-1 particles

.1 C .
in collision. The theorem, called the radiation interference theorem, can

be generalized to other massless gauge bosons.

We find that the kinematic condition for the null radiation zones is

simply that all particles must have the same Qi/pi'q ratio,

Q.
E N all 1i,i , (1.1)

with q the photon momentum. Therefore this condition depends only on the
charges Qi and momenta P;s4 of the external particles in the general

scattering process
k particles »n-k particles+ photon | (1.2)

where, for definiteness, we refer to photon emission. We note that the
photon may alternatively appear in the initial state, and in either case
{1.1) reduces to n-2 independent equations because ¢f charge and momentum
conservation.

Under certain restrictions on the couplings, we demonstrate that each

helicity amplitude, computed from tree graphs, vanishes for the kinematic



null zones definmed by (1.1). The restrictions on the couplings, described
in detail in the next section, require any derivative couplings to be of
gauge theory form. Examples with the prescribed couplings are readily found
in which the null zone condition is satisfied in the physical region:
(1.1} consistent with four-momentum conservation
k n
Ley= L pi*a (1.3)
1 k+1

and the mass shell constraints
p, =m, , (1.4a)

g =0 y (1.4b)

E n
% Qi:k-zu B (-2

As a corollary to the theorem, each helicity amplitude can be written

as a sum linear in the n-2 differences,

. Q
=1 _ 3
biy(@ = Pi*d  pyta (1.8

This result is important since it defines a new canonical form (see Sec. VI)
for radiation amplitudes and since it does not depend on whether or not the
null zone lies in the physical region.

The physical basis of the theorem lies in a corresponding result
for classical radiation patterns. Namely, we find that, given (1.1), there
is complete destructive interference of the radiation from classical
convection currents in relativistic n-particle collisions. In order to

see this, we note that the classical amplitude for radiation (frequency w »



~ -
direction n, polarization €) from the relativistic externzl-line currents
—
S

(particles with velccities i) reduces to

k n Q > -
G, V.
1
A= i(1-]) L1 (1.7)
1 k+l 1-fie¥.

1L

in the low-frequency (infrared=1IR) limit, Using a four-vector notation, we

can rewrite (1.7) as

p.* € ] (1.8)

q-E = O N (109)
it follows from (1.8) that AIR = 0 under (1.1).

Tn the nenrzlativistic limit the null zone condition (l.1l) reduces to

: : all 1,5 . (1.10)
1

Eldo
i
LELO

Thus, the zeros of (1.8) can be recognized as the relativistic generalization
of the well-known absence of electric dipele radiation for nenrelativistic
collisions involving particles with the same charge-to-mass ratio. The classi-
cal underpinnings are given in more detail in Sec. TTIT,
Eq. (1.8) and thus the null zone condition directly apply to the
simple quantum tree (single-photon) amplitude where all the other particles
are spinless and scatter at a point.2 Moreover, the result is not restricted to low-
energy photons. What is surprising about the radiation interference theorem is
that it continues to hold when we go onto the next steps of adding contribu-
tions from spin currents, gauge-theoretic derivative couplings, and

(for n > 4) internal-line emission in tree approximation.



The restrictions on the interactions speecifically require that all photon
couplings to the particles correspond to the same gyromagnetic ratio, g=2 .
In particular,we find that all spin currents can be described by the same
first-order Lorentz transformation, a fact that is instrumental in the proof
of the radiation interference thecrem, but that this description and the null
zones are destroyed by anomalous moments (g # 2) . The equivalence of spin
and Larmor precession frequencies is thus intimately related to the null zone
phencmena.

Under such gauge-theoretic conditions only the quantum corrections from
closed-loop graphs (including anomalous-moment terms) undo the result.
Quantum fluctuations in the sources of radiation, required by the uncertainty
principle, spoil the exact cancellation; we need the long-range classical
currents and perfect plane wave states, such that the particle pgsitions are
completely unspecified, for null zones.

The reactions in which a weak boson and a photon are produced by the

annihilation of quarks,3

- +
u+d-=>uw +vy .
(1.11)

measurable in high energy pp collisions and which may be important in the
verification of the gauge properties of the W, offer striking examples

of null radiation zone phenomena. The lowest-order unpolarized cross
sections are seen to vanish at an angle unrelated to any angular momentum
constraint or specific helicity state.4 With the neglect of fermion masses,

the angular zeros for (1.11) occur at the c.m. angles4

cosd ™ = cosd Y = --% (1.12)



and are indeed destroyed if 8y # 2 . Another example is the reaction

Ge +e +W +vy , (1.13)

where the zero occurs for

otV =t 1 (1.14)
The zeros in the cross sections for (1.11) and (1.13) necessarily imply
that each helicity amplitude calculated from the set of four-body analytic
tree graphs must have an overall factor z==cose-cos60 . The interesting
algebra which shows this factorization has been developed by Goebel, Halzen
and Leveille.5 Zeros and factorization in other 4-body tree amplitudes have

also been discussed in Ref. 5 and by Dongpei.6 Related work by Grose and
Mikaelian concerns the radiative W-decay channels7 that are the crossed
reactions to (1.11) and (1.13). These examples are restricted to n=3,
in our notation, where no intermal-line pheton coupling occurs.

Our motivation for the study of radiation amplitudes stems from the fact that
no explanation was known for the n=3 zeros. We now recognize (1.11) and (1.13)
as examples of a general class of gauge-thecoretic single-photon tree amplitudeé
that vanish under (1.1), and that are the relativistic generalization of the
absence of electric and magnetic dipole radiation for nonrelativistic collisions
of particles with the same charge-to-mass ratic and g—factor.l

The plan of this paper is as follows: The radiation interference
theorem and its coroilaries are presented in Sec. II. Developed in Sec. III
is the classical basis for the theorem, The conditions under which the null
zones lie in physical regions and examples are discussed in Sec. IV and in the
Appendix. The detailed proof of the theorem comprises Sec. V.

In the proof, scalarparticles with constant couplings are considered

first. New decomnosition identities for the radiation by an internal line



lead to a manifestly gauge-invariant vertex decomposition of the total
amplitude. After Dirac and vector particles are added, it is shown how
g = 2 plays a vital role. Derivative couplings are then taken up and a
detailed example follows,

Sec., VI contains a derivation of the radiation representation in terms
of the differences (1.6). The special case where some of the particles are
neutral is analyzed in Sec. VII. The union of the radiation interference
theorem and the standard low-energy theorem for general amplitudes including
closed loops is comnsidered in Sec. VIII.

Lorentz invariance plays a fundamental role in the proof of the theorem;
this role and the classical Bargmann-Michel-Telegdi (BMT) equatilcns are
investigated in Sec. IX. 1In Sec. X, we show how our analysis can be applied
to other gauge groups and te the radiation of other massless gauge bosons.

The last section is devoted to a summary and further remarks.



II. THEOREM AND REPRESENTATION FOR RADIATION IN GAUGE THEORIES

The principal result of this paper is a radiation interference theorem, and

this section contains its precise statement, a brief outline of its proof, and
some implications (corcllaries). The details of the proof are given in Sec. V.
We need the following definitions:

1) Gauge-theoretic vertices: We define these to be Lorentz-invariant

local interactions involving any number of scalar, Dirac or vector fields

with constant couplings but with no derivatives of Dirac fields and at most
single derivatives of scalar and vector fields-all of which are aspects of local
zauge theories. Products of single derivatives of distinct scalar fields

are allowed. All vector derivative couplings must be of the Yang-Mills type;
products of such trilinear couplings are also allowed. 1In particular, the
photon ceuplings must correspond to gyromagnetic ratio g = 2 for all spinning
particles. Thus such vertices include all renormalizable theories of current
physical interest as well as an iInfinite class of nonrenormalizable theories
corresponding to unrestricted numbers of fields.

2) Source graph: This is defined to be any Feynman diagram and

serves as a source for photons. Its external lines are labeled by particle
four-momenta Pi» charges Qi’ and masses m, . The external and internal
lines may be scalar, Dirac, or vector particles (spin £ 1).

3) Radiation graph: We define this as a graph generated by the attachment

to a source graph of a single photon, with momentum q, onto a specific line
or, in the case of derivative couplings, onto a vertex (seagulls}.

4) Radiation amplitude: This is defined as a complete gauge-invariant

sum of all the radiation graphs generated from a given source graph(s).



With these definitions, we state the theorem:

Radiation interference theorem: If MY(TG) is the radiation amplitude

generated by the tree source graph T with gauge-theoretic vertices, then

G

MY(TG) = (2.1)
provided all ratios Qi/pi-q are equal.
Comment: We have already noted that the condition on the ratios,
previewed in (l.1), is precisely the same as that for the vanishing of

classical radiation from incoming and outgoing charged lines (see Sec. ITII).

It may be rewritten

e — , i=2,...,n-1 , (2.2)

where we have chosen 1i=1 as the standard ratio and i=n as the ratio

determined in the limit by the rest. These equations, and the kinematic

region (null radiation zome) implied by them, are analyzed in Sec. IV.
The essentials of the proof are as follows:

Proof outline: The theorem is proven first in the special case where

TG is a single vertex VG. The corresponding radiation amplitude can be

written as

MY(VG) = (2.3)

O
e}

[ ]

el

th
in terms of Ji , the product of the current for photon emission by the i

leg and the remaining vertex factors. Therefore, if

s (2.4)

|
'_l



then the theorem follows for MY(VG)' The derivation of (2.4) for spins < 1
and gauge-theoretic vertices is given in Sec. V and is pivotally related to
Poincaré invariance (Sec. IX).

The generalization of the proof to tree graphs with internal lines
follows from a novel decomposition of the radiation amplitude into a sum over

the source vertices of gauge-invariant terms,
M (T = DM (VIR (2.5)

where MY(VG) now includes internal legs but for which (2.3) and (2.4) still
hold. The factor R(VG) denotes the propagators and the other vertices of

the corresponding source graph. This radiation vertex expansion is also dis-

cussed in more detail in Sec. V.

There are several results ancillary to the theorem:

1) Complementary radiation interference theorem: (2.1) also holds if

the ratios SiJi/pi.q are all equal. (Si is defined below.)

This follows from {2.3) and charge conservation,8

g = 2.6
Lo =0 (2.6)
1
where .
+1 outgoing
§, = .
* -1 incoming (2.7)

In general, these amplitude zeros do not lie in any physical region.

2) Radiation representation: In the case of a source graph with a

single vertex, the zeros of the interference theorem and its complement imply
the double-difference formula,
n-1 Q. 0 J, J
i 1 i
7 §.p.*q — - — (s e I (2.8)

=2 P;*d Py d

MY(VG) =
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The off-shell MY(VG) in (2.5) can be expressed in a similar manner. This
representation, which is discussed in Seec. VI, is an important restatement
of the interference theorems, giving us a new canonical form that is true
irrespective of whether or not the zeros lie in a physical region and that

can be used to simplify calculations.

3) Low-energy theorem: If hH(SG) is the radiation amplitude
corresponding to a general socurce graph SG which includes closed loops and

arbitrary interactions, and if spinning external particles have g=2, then
M(8) =M {s) + R (8 2.9
(8 =M () + RS}, (2.9)

where

RS = 0() ‘ (2.10)

and MY(SG) satisfies the interference theorem (and thus possesses a

radiation representation). This theorem is discussed in Sec. VIII and is

essentially the union of the interference theorem (where there is no

restriction a priori on the photon momentum) and the standard low-energy theorem.
The radiation theorem and its corollaries are valid when neutral

particles are included, subject to a technical stipulation concerning neutral

vector particles (Sec. VII). Also, these results are straightforwardly

generalized from photons to other massless gauge bosons (Sec. X).
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CLASSICAL PRELUDE

In this section we examine classical amplitudes for radiation in a general

scattering process. We look

interference takes place and,

carry over exactly to a very

for null radiation zones where complete destructive
in Sec. V, it will be seen that these null zones

general class of quantum tree amplitudes. Some

of the classical results have been previewed in the Introduction.

We will show that null zZones are in fact the relativistic generalization

»

of the well-known result
vanishes for nonrelativistic
mass ratio.
for a

Q. (e.g., =c > 0

i i

of which the electric dipole

5
d

=l

[Only n-2

of charge and mass. See Sec.

>
d =

gsao, if there are no external

a2 S

th
To review this result, let the i

equations in (3.

SJ'O
-

that classical electric dipole radiation
collisions of particles with the same charge-to-
particle have charge

proton), mass m and position ?i(t), in terms

moment 1is

. (3.1}

(3.2)

2) are independent, according to the conservation

IV.] Egs. (3.1) and (3.2) vyield

- -
L m, ri (3.3)

forces,

(3.4)
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Therefore, the electric dipole radiation field vanishes identically; there ig
complete destructive interference at all angles. It is important to

recognize that this null field situation is the combined result of translational
invariance and the constraint (3.2) on the constituent particles.

The fact that we can include spin currents also has its classical origin:
HMagnetic dipole radiation vanishes for nonrelativistic cellisions at a point,
when the orbital angular momentum is neglected and when the particles have
the same charge-to-mass ratio and the same gyromagnetic factor.ll To see this,

we note that the magnetic dipole moment is

- o >

=L HL

(3.5)

> R

T B S
with spin gi for each particle. If all g-factors are the same

B, 8p> all i, (3.6)
then (3.2) and (3.6) imply

- Ql S

M= gl EHIE Si . (3.7}

Therefore, if there are no external torques which interact with the spin,

L=0 (3.8)
and the magnetic dipele radiation field wvanishes identically.
The relativistic amplitude for radiation during collisions is found

from the classical current

k n
FGLE) = [8(-t) 3 + 8 Y ] Q. V. S(x-v,t-%.(0))
i=1 i=k+1 - 7 oot

+ [small-distance, small-time correcticns] |, (3.9)
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where k 1initial particles scatter into n-k final particles with uniform

N .
- . B bl . . -
velocities v, =t before or after the collision. Spin currents are

ignored for the time being. Thus the classical amplitude for radiation in

-~ - s - _>. -
the direction n and with polarization & by this current for low frequency w
. 10,12,13
is

n Q ;AT
Ak, n) 275 L % lun: (0 (3.10)
1 ti-av, ?

i
dencting the incoming/outgoing sign change by the device in (2.7). The

2
square of the amplitude, ?Ai » 2ives the photon number spectrum into

differential Lorentz-invariant phase space, (2m) 3d3k/2J when the

connection to quantum mechanics is made,

It is seen from (3.9) and (3.10) that the sudden disappearance/appearance

of charges is sufficient to determine the infrared limit, AA%-AIR as w->0, where
o Q - -
Apg(kon) = = § 8, v, € (3.11)
i m(l-—n'v )

This in turn reduces to the correct nonrelativistic electric dipole amplitude,

nonrel

defined as AIR . For common charge-mass ratios (3.2), we see that
nonrel 1 > 2 -
AIR(k,n) = - BEI £ = % 61 m v, = 0 (3.12)

by conservation of momentum (no external forces), verifying the conclusion
reached earlier in (3.4).

We expect (3.11) to be the infrared factor of the correspending quantum
amplitude. For such a comparison (which will be given at the end of this

section) and for the null zone discussion, we rewrite (3.11) in terms of

- 2
the particle four-momenta Py~ (Ei,pi), Pi =m, o, the photon four-polarization
- 2 - 2 .
£=(0,e), 2 =-1, and the photon momentum q = w(l,d), q =0, obtaining
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n Q,
= 4 .
Apg(kyn) =} S P E (3.13)
1 71
using (2.7). Since # = 1, the photon number spectrum may be computed through

(3.13). For common Q/p+q ratios [one is redundant; see Sec. IV],

Q. Q
f =H-%—q, i=23,...,0-1 |, (3.14)
P9 Yy
we find
App (ki) = —I;-;—qi 3.p;re =0 (3.15)

by momentum conservation (1.3) and transversality (1.9).

We thus have a relativistic generalization for arbitrarv photon momenta
of the cancellation of electric dipcle rad%ation. [Foretold in (1.1) and
(2.2), (3.14) has already been observed to reduce to (3.2) in the
nonrelativistic limit.] Because the fields get folded forward, the general
cancellation occurs only for the set of charges and momenta that sacisfy
(3.14), ranges for which are discussed in Sec. IV. It is (3.14) that reduces
to the angular zero in the lowest-order weak-boson amplitude for reactions
{(1.11) and (1.13) and that is the condition for zeros in the very general
class of tree amplitudes defined in Sec. IT.

The classical treatment of the radiation generated by a system of moving
intrinsic magnetic moments is relatively complicated except in the low-
frequency, nonrelativistic limit. 1In that limit the individual magnetic
moments can be represented by their intrinsic (rest frame) wvalues, (3.3)

. s : , 10
and the corresponding radiation amplitude is

N > nimfi-?i(o) , (3.16)



~15-

noting the absence of w—l in comparisen with (3.10). The expression
(3.16) does indeed vanish if the charge-to-mass ratios are ail the same,
(3.2), if the g-factors are all the same, (3.6), and if the total intrinsic
spin 1s conserved.

Orbital angular momentum, through its associated magnetic moment,
contributes terms at the mo level as well, To see this, consider the next

leading term in (3.10) and the identity

> > P A B ~" =
r, x v,) xd+ [(n -ri)vi4-(n vi)ri} . (3.17)

( i i 2

Y

" >
n*r,)v, =
( l) 1

The antisymmetric term in (3.17) leads to an additional magnetic moment
contribution in (3.16) corresponding to the replacement gigi - fii-gi§i
in (3.5); the symmetric term in (3.17) leads to a quadrupole amplitude.
Rather than proceeding further in a semi-classical manner, we will turn
our attention to quantum amplitudes, for which we have azlready found the
infrared factor exactly. To see this for the arbitrary quantum amplitude
M shown in Fig. la, note that the infrared terms are contained in the graphs
where the photon is attached to the external legs, as in Fig. 1b. If the

scattering amplitude for k particles -+ n-k particles is denoted by

- 12
T(pl,...,pn), then the w 1 term is given by

k Qi n Qi
e = H (p.-q)" -m* R e k—g-l (p.+q)° - m° (2py Q) 'E} TPy eeopy)
P~ -m Pt my
= AIR(k,n)T(pl,---,pn) , (3.18)

in view of (3.13). Clearly, MIR vanishes when (3.14) is satisfied and,
indeed, the radiation interference thecorem always holds for the infrared
part of any amplitude. Such zeros in the infrared factor have apparently

gone unnoticed until now. See Sec. VIII.
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IV. Q/p+q FACTORS AND PHYSICAL NULL ZONES

Pricr to the proof in the next secticon of the radiation interference
theorem, we examine the implications of the null zone equations. We consider
the region in the photon, n-particle phase space where (2.2) satisfied and
the question of whether this region is physical or not. Examples and
theorems are presented in this section following preliminary definitions,

identities, and a demonstration that only n-2 equations are independent.

A, Preliminaries

Definition: The null radiation =zone is the momentum-space region where

all the Q/p-'gq factors14 are equal. The .corresponding n-2 equations can be

expressed generally as

= , all 1# 3,0 , 4.1
P;*d Pi'q 3 (4.1)
]
for fixed distinect pairs j,f. [CE. (2.2).] The {classical) infrared

factor (3.13) always vanishes for all radiative reactions in the null
radiation zomne.
The reason that the n-1 possible equations reduce to n-2 follows from

charge and momentum conservation, and the following interesting identity:

atb+c+teee a_ |¢b _ =&
AFB+CHeee A {(B A)B
+(£_£C+-oo __.._l____ (4 2)
c ™ A+B+CHerr .

which is a generalizaticn of

Y]

i
1]
|

+bh  a b Ay 1
B & BTAPAEFE O (4.3)

e
=i



-17-

As a special case of {4.2), we have

a a+b+c+e-

I_A+B+C+"‘ » (4.4&)
if

a b C

e . (4.4Db)
These relations may be rescaled by b-+#b, B+3B, c¢+vC,..., for arbitrary
SaYyenn The cases where we rescale by the value -1 are of particular

interest.
Therefore, charge conservation (1.5), momentum conservation (1.3), the

masslessness of the photon (1.4b), and (4.4) imply that

O Q.
i .5
PQ g Pj q

if (4.1) holds. The last Q/p+q factor is determined by the rest through
(4.2) and all n must be equal if n-1 of them are equal.

A caveat exists for any attempt Lo use an arbitrvarv set of n-2 equalities
for the Q/p*q factors in place of (4.1}, since they may not always be independent.

For example, the electron-electron reaction,
e (p)) + e (p)) > e (py) + e (p) +v(a) (4.6)

has a null zone given by P11 = 9,79 = Pytq = D, g But I p3'q is
is equivalent to pz-q = pé'q by momentum conservation and, therefore,
they dre not independent equations. This problem does not arise if the

srescription in (4.1) is followed.
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B, Kull Zone: General Remarks

Since p; A is positive semi-definite, the first restriction freom

(4.1} is that all nonzero charges in both the initial and final state must

have the same sign,

Q

Qi
, all i, . (4.7}

J

This includes neutral particles which are required by the null zone condition
te have zero mass and to travel in the same direction as the photon.
(Neutral particles are addressed in more detail in Sec. VII.) For a given
initial (final) state, the more final (initial) particles there are, the
smaller their charges, and consequently fractional charges can play a special

15
role.

In the nonrelativistic limit for all n particles, (4.1) gives the

familiar result

> all 1 # 3,0 (4.8)

El|H
|
BLe

which is equivalent to Eq. (3.2) and is indeed satisfied only for same~-sign
charges. Note that, in the nonrelativistic limit, mass conservaticn replaces
momentum conservation in justifying the reduction from n-~l1 to n-2 equations,
again noting (4.4).

Although we shall show that physical null zone configurations do exist
in realistic examples, it is emphasized again that the radiation interference

theorem goes beyond whether any phvsical null zone can be found since the
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radiation representaticn alwavs holds. For the same reason, the fact that
the ratios ?iji/pi'q have no (nontrivial) identical values does not leave

the complementary radiation interference theorem empty of content.
C. Null Zone: n < 3

Given that all nonzero charges are of the same sign, the next step 1is
to find the null zone constraints on the energies and angles.

l. n=1 For completeness, we include this "mixing" transition which is
only realized off-shell for well-defined particle states and has a tadpoie
source graph, The radiation representation is triviallv zere since Ql= d

2. n=2 This occurs, for example, in uU—~eYy lepton-number-viclating
radiative decays. The momentum and charge conservation equations, Py = p24-q
and Ql = Q2, respectively, automatically satisfy Ql/pl'q = szp2°q » in
accord with the fact that there is no independent equation in (4.1). Thus
the radiation representation is identically zero and, indeed, the most

u

general amplitudel6 ?(a-FB‘YS)Guvw q Ev is 0(q) , with contributions from

derivative couplings on closed loops. (See Sec. VIII.)
3. n=3 decay We consider the decay process where Py = p24-p34-q

and Ql =Q,+Q The single null zone equation can be taken as

3

2o % : (4.9)
Pytd  Pyrd

In the rest frame of the parent, take the two free variables to he the

energies E and E

5 3 OF, rather, the variables



25 .
_ Pyt 2By 2 9
¥ = R = 1 - THH'+ uz-U3 ,
my 1
(4.10)
2
_“Ppd 2By
vo= ?*=1—F—+U3—U2 3
m, 1
1
where
U, T m,/m (4.11)
i i 1
The variables x,v coincide with those of Ref. 7 in the limit my, = M, = 0
Eq. (4.9) may be rewritten
.2 4.12
Y"ng L) ( . )

and the question before us is whether this straight line intersects the
physical domain in x-y space.
The boundary limits on x and y are derived in the Appendix. The

overall x range is

0 < x < (1-u2)2 ~ ui R {(4.13)
and, for a given x in (4.13), the v range is
y_ S Y S ¥, R
r Z._.?_i_ + 2_ ‘_2 1/2
‘\.: = ZA [B - (B 4L2A) ] ]
(4.14)
_ 2
AT x4 u3 .
_ 2 2
B=1- Uz-u3-x

The roles of x and y may be reversed by relabeling 2 < 3



In the massless limit m, = m

5 = 0 , the inequalities (4.13) and {(4.14)

3

reduce to the case already discussed in Ref. 7

(4.15)

Thus, there is always a line of intersection in x -~y space between (4.12)
and (4.15) as long as the three charges have the same sign. 1In a situation

7
where m, and m, can be neglected, e.g., W-decay, there is always a

physical null line for each n = 3 decay helicity amplitude.
In general, the range of values of QZ/Q3 for which we have a physical

null zone will be limited according to the given set of masses m, and My -

This is discussed in the Appendix, and we quote one particularly interesting

result, Namely, there is a physical null zone for all masses and charges

such that szmz = Q3/m3 , M.+m. <m

9 3 S my . This charge-to-mass ratio stipulation

is consistent with the soft-photon, nonrelativistic limit, where m2+m3 =m

and all Qi/mi are equal, and is a special case of a general theorem to be

nresented later.

4. n=3 scattering For the reaction where Py + Py = P + ¢q and

Ql + Q2 = Q3 , the single null zone equation can be taken as
Q Q
LS— . (4.16)
Pl'q pz‘q

- —
In terms of c.m. variables, the angle O between py and q Is derived
‘rom (4.16) to be

QE) =R,

, (4.17)
%+

Pcosh =



. > N H

The physical null zone for the n = 3 four-body amplitudes corresponds
to those angles 0 of {(4.17) for which ic058| £ 1 , and is discussed for
general masses and charges in the Appendix. In the ultrarelativistic limit
(ml,m2 +~0), (4.17) yields

P -Q
cosb = 5,7 (4.18)

and all positive Q2/Q1 values produce physical null points. It is seen
that (4.18) checksq’b with (1.12) and (1.14). The nonrelativistic limit is
consistent with unrestricted © (total interference at all angles). The
Appendix contains a demonstration that, if Qlfml = Q2/m2 ,» @& physical null
zone exists whatever the energies, again ; special case of a more general
theorem.
D, Mull Zone: n = 4 example

It is now possible to build up the results for larger n from the n = 3
analysis. For n = 4 , consider the 2 + 3 process where pl-sz = p3-+p4-+q
and Ql-i-Q2 = Q2+Q3 . This is equivalent to a three-body decay of a system
with mass E = El + E2 (the total c.m. energy). The photon angle is still

given by (4.17), using {4,16) as one of the two null zone equations. The

second null zone equation is

X (4.19)

expressed in terms of variables analogous to (4.10),



2 2
2p4°q 2E3 m, - m,
e ’
: : (4.20)
2 2E c
y:p:s'q:l_ 4, M ™
2 E Y,

The two null zone equations, (4.16) and (4.19), do not follow the prescription
of (4.1), nevertheless, they are independent.

We count the dimensions of the null zone by recalling that the photon
polar angle is fixed and noting that its azimuth can be arbitrarily chosen. The
energy of particle 4 is determined by (4.19). After four-momentum conservation,
the last two free dimensions may be taken to be the energy x of particle 3
and the azimuth of the plane of particles 3 and 4 {and ¥v) relative to the
photon axis. These constitute a 2-dimensional null zone.

We may use the previous decay equati&hs in (4.12)Y-(4.14Y and in the

Appendix, mutatis mutandis, to determine whether the null zone is in the

physical region. 1In particular, if the ratios Qi/mi are all identical
(see subsection E), there is a physical null zone for any c.m, energy.
This suggests a striking example.

Bremsstrahlung in electron scattering, (4.6), satisfies the radiation
theorem in lowest order and, in addition, the Qi/mi ratios are identical
for all charges. Thus, we discover amplitude zeros in a textbook reaction
that have gone unnoticed up to now and that occur somewhere for all

energies (£ 2 2m,m,=m). Having two (or more) source graphs is immaterial.
i

The physical null zone is the two-dimensional region explained above and in

the Appendix:
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E'{l-v'cosB'Y = E/2 ,

/2 < B <o

(4.21)
0 < g' < 2n ,
8 =mw/2
. . = = gt : P = EaRTAl = E'
in which E; = E, = E', the final velocities vy =y, Svl, 83 84 e,
and the photon energy is w = E-2E' = - 2E'v'cosS'., The final-state plane

of the two electrons and the photon has an azimuthal angle $' about the
photon axis, pictured with the other variables in Fig. 2.

In contrast to identical scalar bosons, the radiative region (&4.21)
shown in Fig. 2 is not forbidden by angular momentum conservation for identical
spin - %—fermions. It is radiation interféfence, and not the exclusion
principle, that leads to a zero in the (tree) radiation amplitude for reaction
(4.6). The fact that closed loops can destroy the radiation zero but not

angular-momentum zeros provides one test for such interpretations, when the

two mechanisms overlap, and is discussed in Sec. VIII,

E. Null Zone: Theorem

As n increases, the null zone analysis becomes increasingly complicated.
However, it is peossible to give a general criterion for the existence of
physical null zcones:

Physical null radiation zone theorem: There is a null radiation zone for

any c¢.m. energy in the physical region of the reaction, k partieles - n-k
particles + photon, if the initial particles have an identical charge-to-mass
ratio and the final particles share another common charge-to-mass ratio, not

necessarily the same as the initial ratio.
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Corollary: As a special limit of this theorem, one can require
instead that the initial and/or the final particles be massless.

In short, we can always find physical regions where all Q/p+q are
equal, provided that the Q/m are equal or that the particles are massless,
conditions which can be restricted separately to the initial or f£inal states.
In decay processes, obviously, the parent must not be massless, and in_all

cases the nonzero charges must have the same sign. We note also that,

alternatively, the photon may be in the initial stare.

The proof and further remarks concerning this theorem, its corollary,
and their variations are given in the Appendix. It should be noted that,
in the event there are mere than two particles in the initial state, a
phvsical null zone corresponds to limited regicns of initial as well as final
phase space. The point is that such regions can always be found, under the
conditions of the theorem, Earlier examples can be compared to the theorem,
noting that electron scattering (4.6) and W production (1.11) with massless
quarks and arbitrary quark charges conform to the theorem and its cerollary,

respectively. The corellary is particularly useful for high energy limits.
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V. PROOF OF THE THEQREM

The proof of the radiation interference theorem is carried out initially
for spinless particles and no derivative couplings. The extension of the
proof to encompass spin and gauge theoretic vertices is subsequently taken up
and a detailed example is given.

A. GSpin-zero fields and constant couplings

We first consider scalar/pseudoscalar particles whose couplings to each
other may involve an arbitrary number of fields but no derivatives. Their
photon coupling, on the other hand, is the standard convective derivative
trilinear interaction.

A vertex source graph, VG(n), is defined to have n external lines
coupled through a single vertex (Fig. 3a)j- In the absence of derivative
couplings in VG(n), only external-line photon attachments (Fig. 3b) are
present in the corresponding radiatiom amplitude. For photon emission {(momentum
q, polarization ¢} by an external scalar leg with charge ( flowing along

. : 13
momentum p, we have the following (convection current) factors:

outgoing particle: ;95 P (5.1a)
incoming particle: (-p+€) Egar R (5.1b)

where p is outgoing [incoming] in (5.1a) [(5.1b)]. We note that Egqs. (5.1)
are invariant under p * pZIgqg
Let An’ which carries dimension if n # 4 , denote the constant vertex

in VG(n). Then the radiation amplitude is

MV ] = Ay A (o) (5.2)



where AIR(k,n) is the classical amplitude, (3.13). Therefore the proof
of the theorem in this instance is immediate.

The n=3 vertex is the spinless version of (1.11) which is known5 to
have the same amplitude zero. The new aspects of the preceding results for
vertex source graphs are the demonstration that amplitude zeros also exist
for n >3 (an infinite class) together with the identification of the conditions
(4.1) for their location, and the understanding of the physical basis for
their occurrence (the interference of classical radiation patterns).

Te generalize the proof to arbitrary tree graphs, we must take into
account the radiative contributions from photon attachments te internal lines.
(Cf. Fig. 4.) Remarkably, the same zeros survive. A crucial step in
handling such contributions involves the use of an identity for real photon
emission from a scalar internal line (mass m, charge Q, and momentum change

|

from p to p' Zp-q):

._.—l_. t . = '. %4__;“__
i Vi mz Qlp' +piese 5 5 = 5 7 3 g p'eg + (-p.g) i 5 s (5.3)

p'T -

using qe.& = q2 =0 .

Eg. (5.3) is the first ¢f a set of new identities to be used
for real-photen couplings to internal particles. The spin-'s and spin-1
versions appear in the next two sections, and we refer to these as radiation

decomposition identities, since they represent a split of the internal

vertex into twe terms each of which is a product of a propagator and a

quasi-external-leg emission facter. (These external-leg emission factors

"

are called "quasi" since their momenta are off-shell.) This decomposition

is graphically illustrated in Fig. 5 and is manifestly gauge invariant.
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In the scalar case (5.3) holds to all orders. The invariant-amplitude

2 . 2 2
o (p _pRETY, e +

expansion for the scalar-photon-gscalar vertex function,
(p‘-%p)ug(p‘z,pz), implies that T-e = (p'+p)-€ g. Altermatively, the Ward-
Takahashi identity can be used to show that A'(p'z)—l-ﬁ'(pz)—l= -2p-q g,

where A' is the full scalar propagator. Thus (5.3) is valid with (p' +p)-€

replaced by T'-¢ and the free propagators replaced by L‘.l7

Let us illustrate the use of (5.3) with an n = 4 example, photon
emission from a t-channel-exchange source graph, depicted in Fig. 6. We find

that the five graphs in the radiation amplitude can be expressed in the form

L2 ~
) 1K3 ! Qﬁ Ql
My (Fig. 6.) = : «E _ .z
A .2 2 T p,eq Py | Py
(p3"p2) -mS ‘— 4 l
. .AZ - r
Q- Q (o ~pyeci + A | Qap.g
(p. =p,)e-q P17 Pg7 "= 2 2 I paeq '3
Lo 5 (p-py) -mg |73
Q a, -Q )
2 R
il ST - (p, - pyl+€ ) (5.4)
Pyed 2 (p2 p3).q 2 3 j
where p,+p, = p3+p,+q, Q. = Q-Q, = Qy-Q, . [A radiation

representation for (5.4) is given in Sec. VI.]

We notice that the two quantities in square brackets in (5.4) are the
classical AIR amplitudes (3.13). These amplitudes are separately gauge
invariant, and each is associated with one of the n=3 source vertices.
Both quantities are multiplied by the original source graph amplitude, but
with different kinematics in the two cases. The momentum assignment in each
source amplitude is determined by momentum conservation at the other vertex.
These features are quite genmeral and are reflected in the proof to which we

return.
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From a general scalar tree graph TG and (5.3), we obtain a radiation

vertex expansion [cf. (2.5)]:

MY(TG) = z_vaIR(v) R(v) (5.5)

summing over the vertices v of TG . Here, AIR(v) is the gauge-invariant

off-shell version of the classical amplitude (3,13) for radiation by the legs

of vertex v and is given by

Qi
p;*d

AIR(V) = g Gi Py "€, (5.6)

where the sums are over all external and internal lines intoe and out of the
vertex, Also, R(v) is comprised of the remaining factors in TG including
all propagators and with the momentum ass{gnments consistent with photon
momentum q leaving vertex v. [ R(v) is simply TG/)\V in the scalar case,
but with momentum unconserved at the vertex v.)

The validity of (5.5) follows from the fact that (5.3) partitions each
internal-line photon attachment into two quasi-external-line attachments
which are respectively and unambiguously assigned to the two vertices joined
by the internal line. For every vertex v , we are left with a complete set
of photon emission factors, one factor for each attached line and each
factor with the same coefficient R(v). The momentum of each propagator on
the right-hand-side of (5.3) is consistent with ¢ leaving the vertex to
which its quasi-external factor is ultimately associated, giving the same R
that the external-leg radiation does.

The last step in the proef for scalar tree graphs follows from the fact

that through (4.2) the intermal Q/p*q factors are determined by the

external ones. If (4.1) is satisfied, then all factors are equal, intermnal
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and external, so that

Y
P d  P,°d

]

for all T . Therefore, each AIR(V) (and consequently
nuil zone.

The theorem can be checked by the n=4

In addition, this example demonstrates the interesting

internal charges, which may occur even

same sign. Suppose that Ql = Q4 and (so) Q2 = QB’

null zone condition is {or equivalently

P1*d = p,9

the same as = (pl--pl')2 , and therefore the

(py - p2)2
through in (5.4) but now between the square brackets.

since the original demonstration did not depend on the
and the limit Ql -+ Q4 could be taken before or after
general, we may regard any two vertices conmnected by a

as a single compound vertex in expansions like (5.5).

(5.7)

My) vanishes in the

example in (5.4), using (5.6).

case of vanishing

though all external charges have the

leaving QS =0 . One
Patq = pz'q) which is
cancellation still goes
This is not surprising
magnitudes of Qi’
demanding (4.1). 1In

neutral internal line

Neutral external

scalar lines conform to the theorem as well but in a more subtle fashion.

Their inclusion is analyzed in Sec. VII.

We conclude this subsection with a few general remarks.

Recall that,

since the null zone cancellation depends conly on the values of the external

charges and momenta, all source graphs (with the prescribed couplings) generate

tree radiation amplitudes that vanish at exactly the same places for a given

set of external particles. We also point out that the

proof breaks down for

closed-lcop scurce graphs, since (3.7) dees not feollow unless the internal-line momen-

tum is fixed by the external momenta,

However, the analysis is applicable to the



tree substructure and does imply a cancellation to 0{(q) <for arbitrary
amplitudes, according to the discussion in Sec. VIII. Finally, we remark
that zeros in tree graphs, with classical propagation between vertices and
without spin and derivative couplings, might very well be expected to be
"classical" and thus derivable from considerations such as those in Sec. IIL.
Yet, (3.13) is a low-frequency result while the tree graph demonstrations

are seen to go through for arbitrarv photon momentum.

B. Inciuding spin-half particles

Next we extend the proof of the radiation interference theorem to include
Dirac particles. Specifically, each tree source graph may now involve
any even number 2D of Dirac particles along with an arbitrary number
n=2D of scalars (but no derivative couplings). The (only) new ingredient
is the Dirac spin current and the strategy of the preceding subsection may
be followed.

A vertex source graph may be written,

s (5.8}

in terms of D spin bilinears. (w,w' are chosen as needed from the
ramiliar wu,v spinors.) The Ti are constant matrices in spin space and,

in view of the Lorentz invariance of VG, it is left understood that thev

may be summed over in wvarious combinations, as in, for example,

ffuu,ny”u,. Any coupling factor representing the presence of the n-2D
3 j K L

11
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scalars can be absorbed into the Fi.
The factors corresponding to (5.1) for photen emission by an external

Dirac leg are computed from minimal (gauge theoretic) coupling to be

outgoing particle: p?q u(p)(pec + % 4.41) (5.9a)

P . , 1 0

incoming particle: (-p-e -7 ME. 4D ulp) ooa , (5.9b)
. . . . 1 Q

outgoing antiparticle: (pee - Z—{é,ﬁ]) v(p) 5q , (5.9¢c)

. , . ) Q - 1

incoming antiparticle: beq vip}(-p-ec + 7 [¢,41) . {5.94)

We see that each is a sum of convection and spin currents, and each replaces
the original spinor in the source graph. The absence of explicit mass
dependence in (5.9) is fundamental to the use of minimal coupling and can
be compared to Eq. (5.26) below.

The radiation amplitude for the vertex source graph (5.8) can be cbtained

directly from (5.1) and (5.9). With k dnitial particles,

D D
M Va0 ] = Vo (n,D) A (kyn) + Z S, I wiliwe (5.10)
i=1 j=1
where
Q; 3,
S =@ (p) { = (£ 41T T [£.4] —— * w.(p) . (5.11)
i 4 i pi-q tTe S BT
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The combined convection currents, one from each leg, give the term in (5.10)
with the classical amplitude factor, (3.13), which clearlv vanishes in the
null zone,

We can show that the Dirac spin currents also conspire to cancel, in
the null zone, but by Lorentz invariance rather than by translational
invariance. The key to this result is a relaticnship between Lorentz
transformations and the minimal photon-spin-% coupling. Namely, the spin
currents in (5.9) are proportional to first-order wave-function corrections
all of which can be associated with the same {called "universal" hereafter)

first-order Lorentz transformation,

A =g 4 Lwl s {(5.12)

where

woo=qE -<q (5.13)

and X is an infinitesimal length., The spinor wave function © Lorentz-

transforms as

wix") = S0 P s (5.14)
where x' = Ax and, in first order,
S =1 -300 oV =1 -2 lgdl (5.15)
4 R 4
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using (5.12) and (5.13). Comparison of (5.9) and {5.15) establishes the
relationship.

When the Q/p*q factors are equal, (5.10) reduces to

@, D D
M V. (n,D)] = ——= 7 G'AT . w., 1 w!T,w, (null zone) (5.16)
(G SRR A A T i ’
with
AT = 2 UA4] T, T, L I£,4] (5.17)
i 4 7 i 14 "7 )
R SRR P
=7 [Juv$ , Fi] . (5.18)
We see that (5.16) is propertional to the complete first-order ~hang.
(5.8), under (5.12), since X ﬁi ifi Wy is the first-order change inlg in
§£ Ti oo By the Lorentz invariance of VG » we conclude that
MY{VG(H,D)] =0 (null zone) ] (5.19)

This completes the proof for vertex source graphs.
To extend the proof to an arbitrary tree source graph with internal lines,
we need an identity, for a real photon attached to an off-shell Dirac line,

analecgous to (5.3). The alternative expressions

(B +m)GB+m) =208 +m) (p'ee+ 1 [£.4D) - (p' -mD)g . (5.20a)
1 2 2
= 2(pee+y 4D GB+m) -£ (- ") , (5.20b)

anc the decomposition used in (5.3) lead to

o1 1 i q L1 1 0 i
i PS' -m Qt gﬁ-m = Iﬂf_m p,-q (p t.»-,+z—‘ [i,ﬁ])"‘(—P-L—Z [¢,l‘l]) o l”"m . (5.21)

The Dirac radiation decomposition identity, (5.21), like its scalar counterpart,
follows the schematic of Fig., 5 and offers an immediate demonstration of the

asscciated Ward-Takahashi identity,
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Parallel to the scalar case, (5.21) provides the correct incoming and
outgoing convection and (now) spin currents, for each incoming and outgoing
internal line of a given vertex in a source graph, in order that the null
zone cancellations go through. The use of radiation decomposition identities
vields the general radiation vertex expansion [cf. (2.5) and (5.5)], the sum over

source vertices v,

MY(TG) = é M# [VG(V)} R{v) , (5.22)

where HY[VG(V)] is the radiation vertex amplitude now including internal legs.
For the Internal legs of a given vertex v, we replace the corresponding
spinors {(w or w') in (5.10) by spin indices that are tied to the remaining
factor, R(v), which contains all propagators. R(v) is TG less the vertex v,
with momentum assignments consistent with photon emission (q) from v .

Since we have seen in (5.7) that internal and external Q/pe'g
factors are equal in the null zone and since we have a complete set
of convection and Dirac spin currents, the conservation of momentum {modulo q)

and the rank-zero naturelg’20

of the string of Fi's at each vertex v lead
to an off-shell version of (5.19). The theorem is thus proven for scalar-
spinor tree source graphs with constant couplings.
Since any deviation from minimal coupling for Dirac particles ruins the
. - B . P )
n=3 factorization,” it is expected to undermine the radiation interference

theorem. In detail, we see that an anomalous magnetic moment coupling

(Pauli moment) leads to the modified photon-spinor vertex,

a
Erieo - [4.4) (3.23)
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where the magnetic moment and gyromagnetic ratio are
H=g-—, g=2(l+a) (5.24)
E:Zm » L] -

in terms of the anomaly a . The external current, (5.%a), for example,

is then changed to

Q= er L a WV
oeq u(p)(p €43 [?f,ti](1+a)+2m ww Y ) . (5.25)

The previous argument, where a=0, depended on the relationship between
the spin currents and a universal Lorentz transformation. The p dependence
A Hov . . .
of the new term , qu B Y , destroys this relationship.,
Therefore, we observe that the Dirac electromagnetic coupling {(minimal

coupling), as given by the local gauge algorithm that generates a

renormalizable theory and such that a=0 in lowest order, is required for

the radiation interference theorem. {(This should not be confused with the fact
that, even without derivatives, the source graph may derive from nonrenormalizable
interactions, such as 5-particle couplings.) It is perhaps more to the point,
particularly in view of the next subsection, to simply say that g=2 1is required at
the tree graph level for particles with spin. The result that only gauge-theoretic
spin currents produce the necessary universal Lorentz transformation is very
important and is discussed again in Sec. IX.

This last discussion serves to show that electromagnetic gauge
invariance (invariance under € >€+q) 1is not sufficient. The Pauli terms,
for example, are gauge invariant, but lead to g# 2, nonrenormalizability,
and a vipolation of the radiation interference theorem, all of which appear

to be intimately related to one another.
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On the cther hand, an important feature of (5.22) is that the terms

are separately gauge invariant. This is a consequence of the use of the

decomposition identities for internal radiatiom, in which the Ward-Takahashi
identity is made manifest. The example given later displays this feature.
The zero-charge limiting case for internal and external Dirac lines can also
be studied with that example, and involves interesting subtleties that are
discussed generally in Sec. VII.

C. Including spin-one particles

We further extend the proof of the radiation interference theorem to
include vector (and axial vector) particles, continuing to use the previous
strategy. We add an arbitrary number N  of wvectors to the 2D Dirac
particles and n-2D-N scalars in the tree source graph, but still with no
derivative couplings. )

The only derivative couplings, therefore, are in the scalar and vector
electromagnetic currents; the latter photon coupling is the new ingredient
here and has the form22 of the locally gauge invariant Yang-Mills (gauge
theoretic) trilinear vertex, the general expression for which is given Fig. 7.
Such a photon-vecter-vector coupling corresponds to ¥ =1 for the magnetic
moment parameter of the vector particie, or g=2, and is crucial to the
validity of the theorem. (Violations for Kk#1 are discussed at the end of
this subsection.) The quadrilinear vector couplings of non-Abelian gauge
theory, in which the photeon participates, can be regarded as seagull terms
and are treated in this way in subsection D.

The incorporation of neutral vector particles into the proof is
particularly delicate. This problem is correlated with the zero-mass limit

and both are considered together in Sec. VII.



—-38-

The vertex source graph is generalized from (5.8) to

N UK D
Vio,D,N) = T n, (I w.[.w.) , (5.26)
G -1 £ =1 FEEL "
172°°°"N
. 13
in terms of the vector polarization factors n. For convenience, we

now include possible S ’Euvcp tensors along with the Dirac matrices in
the definition of the Fi’ making up the (constant) rank-N Lorentz tensor

into which the nE are contracted.
As before, the absence of derivative couplings means that only external-

line photon attachments contribute to the radiation amplitude generated by

(5.26). The vector counterparts of the photon emission factors (5.1) and
(5.9) are calculated by contracting the vector propagater, iPUv(p)/(pz-mz),
where
p.P
= _ |
Puv(P) = guvﬁk m2 , (5.27)

with the photon vertex that is inferred from Fig. 7

.

For an external vector leg with charge Q £flowing along

momentum p and with polarization n{p) (n-p=0), the currents (convection

plus spin) are

outgoing particle: Ega'(p-Ele+ wuvnv) , (5.28a)
) v, Q

i i ticle: ~psE + W . 5.28b

incoming partic (~-p ny " ) peq ( )

These replace nu in the original source graph. The remarkable simplicity
of (5.28), directly related to the lack of explicit mass dependence, is
spoiled by the nongauge coupling discussed at the end of this section.

We Learn from (5.28) that the relationship between spin currents and
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the universal Lorentz transformation is not just an accidental aspect of
Dirac particles, since the vector spin currents are also proportional

(for g=2) to the first-order change under (5.12) in their associated
wave functions. This relatiomship is the key to the null zone cancellaticen,
analyzed below, of radiation amplitudes including spin-one particles, and

its general features are the subject of Sec. IX.

From (5.1), (5.9), and (5.28) it follows that (5.10) generalizes to

! I —3 I
MY[\G(H,D,N)] VG(n,D,W) AIR(k’n)

N ug D D _

=1 i=1 “3#1 I TR

N0, U WD
+] Lo ’Z\)nz Tn® (0 w T w) , (5.29)
2=1 Peed = AR 5 B Hyee oty

with the familiar classical amplitude (3.13) as the repository of the complete
set of convection currents, one for each leg, which vanishes under (4.1). 1In
the null zone, the Dirac spin currents in the seccnd term of (5.29) are
proportiocnal to the first-order universal transformation of the rank-i
spinor product according to the remarks in subsection B and are therefore
cancelled by the third term which is similarly related to the first-order
transformation cf the rank-N vector polarization product. The total first-
order change of the rank-zero VG vanishes under (4.1) by its Lorentz
invariance:
HY[VG] =0 {null zone) . {5.30)
We need a radiation decomposition identity for az real photon attached to

an off-shell vector line anmalogous to (5.3) and (5.21) in order to consider
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an arbitrary tree source graph TG . This identity is
—1’.(]1_{(S
202 2 2
(p"=m ) (p-m )
lP (p') ~ 7 “( )
(B € B 3 g! Gy _Q 6P
== (pleg gh . ) (—prig A ) — (5.31)
r2 2 L =2 5 k r , . 2 : ’
_ P q i roerd -
where, using the notation of Fig. 7,
I .= ny ¢FO% e : 5.32
5 Yﬁ(p ) ¥ (p'yq,-p) Pad(P)CC . (5.32)

Eq. (5.31) is derived using both of the alternate expressions for (5.32)

)

t—t
]

Sn) (e p it pla) L (5.33a)

-2P_.(p")(p'.e g3+wﬁ8)+~lﬁ (p e
i 578 2 Tt (

m

I n L2 2
2(-p-¢ gY-+uH')PQ5(p)-Fm2 (EY p6.+py‘€6) (p” -m") . (5.33n)

and is also described by Fig. 5.

The decomposition (5.31) allows us to form a radiation vertex expansion
[cf. (5.22)] in the same manner as before but which now includes internal and
external vector particles. For every internal particle with spin that is
attached to a given vertex v of TG, the factor VG(V) , defined aé in
(5.26), has a free index in place of the spinor or polarization vector,
leading to an overall tensor-matrix rank for VG. The off-shell radiation
amplitude HY[VG(V)]’ defined in subsection B, is likewise multi-spinor-

indexed and a Leorentz tensor.

Now, we may regard VG {and Mv) as Lorentz invariants in a manner following

. C o 20 . ) .
the spinor description. For each internal vector leg, index U, we rewrite

o

(VG)u as (VG)én (1) for n (u) = g; , defining an internal vector wave

function. TIf all wave functions, vector and spinor, external and internal,
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are universally Lorentz transformed, VG is unchanged and, in particular,
the first-crder terms cancel. Since (5.31) provides exactly these internal
first-order changes, M, continues to satisfy (5.19).

In sum, the spin currents associated with each tree vertex cancel out
in the null zone by Lorentz invariance, independently of the convection
cancellation. The theorem is thereby extended to scalar-spinor-vector tree
source graphs with constant couplings. The detailed example in subsection E
includes both internal and external vector particles.

A non-gauge-thecretic photon coupling to vector particles can be seen

to spoil the cancellation. For K# 1, the previous gauge-symmetric vertex for

2
(p,a)>(p',B)r+ (g, 1) is augmented by the term 2

i Q(K-l)(gguqa*qg gpa) . (5.34)

The currents are changed by the addition of

Q k-1 e
oeq 2 va(ﬂ)m np s {5.35)

where f€=p+q (p-q) for the first (second) factor in (5.28). The p

dependence of P

v in (5.35) ruins the universality of the spin currents.

We need K=1, or g=2, in the vector magnetic moment,

u=g%,g=l+l€ R (5.36)

in order to maintain the relationship between the spin currents and the
universal Lorentz transformation (5.12) and thereby the validity of the

radiation interference theoremn.
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D. Including derivative couplings : seagulls

Although derivatives have already been introduced in the scalar and
vector electromagnetic currents, it remains to consider the possibility of
derivative couplings in the interactions of the source particles themselves.
Such couplings appear naturally in gauge theories, and have been described
in Sec. II. TIn this subsection we show that the radiation theorem
continues to hold for the general class of gauge-theoretic interactions
in the source graph, and that the current associated with the presence of a
derivative coupling is described by the same Lorentz transformation that
characterizes spin currents,

We first examine the consequences of single-derivative factors:
Lagrangian interactions cf the form (BuWiXﬁWjWk...)u or products thereof,
(EUWi)(Bij)... , where each field ¥ , boson or fermion, has at most one
derivative. Obviocusly, these include interactions that can be brought into
single~derivative form through an integration-by-parts,

Electromagnetic gauge invariance is maintained by the replacement,

3. >3 - iJQiAu ,» in terms of the photon field AU and the charge Qi of

H H

the field Wi, resulting in the familiar seagull interactions involving the
photon. Therefore, in the construction of radiation amplitudes, anv momentum-
dependent source vertex requires a direct photon attachment, adding a seagull
current to the convective and spin currents.

Let us consider a vertex in which there is a derivative coupling, (8SW)...,
and the external or internal leg (particle of ¥} connected to this vertex, as an
isolated part of a source tree graph. In momentum space, the vertex may be

3 .
denoted by p re, in terms of the momentum p of the leg and the remaining

vertex factors r.
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We focus on the radiation, due to the particle ¥, from this isolated
vertex-leg system, as in Fig. 8. This contribution to the vertex radiation

amplitude in (5.22) is

MY = [t‘;%a p-E(ptq)B~(QEB-+ spin term]rB (5.37)

for an outgoing (+)/incoming(-) particle. In the internal-leg case recall
that only the radiation-decomposition term relevant to this vertex is to be
included. Aside from a possible external wave function, r resembles R
in (5.22) in that it can be expressed entirely in terms of momenta other
than p and q.

The seagull term in (5.37) comes from the vertex factor, ~qu5 , which
can be directly derived by the constraint Pf gauge invariance. In this
regard, we note that the spin currents are separately gauge invariant and
that the convective current in (5.37), *Qpeepesx/p-q, 1is conjointly gauge

invariant with the other convection currents in the radiative vertex amplitude.

The seagull and momentum-shift contributions to (5.37) can be rewritten

in the suggestive form

ﬂ_[ c S EB
. D T . (5.38)
peq P*EQ -Pq ] g
These terms go hand-in-hand for any single-derivative coupling in the source
graph. (They also appear together in first-order q for higher derivatives.)

The significance of (5.28) is that it allows us to identify a universal

contact current,

Qv

; (5.39)
peq
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for photon emission from a line coupled through a (linear)} derivative
coupling to a vertex, to be added to the convection and (any) spin currents.

23 PV . . . H [y
The rule is that (5.39) replaces ¢ in the derivative coupling, p™ = g Py

(We recall that the other currents may be regarded as wave-function

substitutions.) A summary of all photon emission factors is given in Table I.
We see from (5.39) that the contact current is proportional to the
first-order Lorentz transformation (5.12) of the rank-one derivative. We
have previcusly found that the spin currents transform the wave functions and
now we see that the contact currents transform the derivatives. The
arguments of the preceding subsections continue to apply: Lorentz invariance

guarantees a cancellation of the terms that are first-order in q . [Inasmuch

10
-

as w 4 is linear in q, the order of ¢ is equivalent to the order of X
in (5.12}.] 1In the null zone, the radiation vertices in (5.22) vanish up to
O(qz), in the coefficient of Q/p-q .

The O(qz) terms arise when a spinning particle encounters its own
derivative coupling,24 specifically from the product of the spin current and
the momentum shift:

spin term = spin current X (ptq)g . {5.40)
from (5.37). Lorentz invariance guarantees only that the first-order term
in (5.40) is cancelled in the null zone. Thus, second-order terms develop
for interactions in which there are derivatives of Dirac or vector fields,
as well as those in which higher derivatives of scalar fields occur. These
second-order terms do not cancel in the null zone (and therefore the

radiation interference theorem does not hold) in these cases unless an

additional mechanism is operative.
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In fact, there is an exceptional case in which such an additional
mechanism is present. The quadratic terms cancel under (4.1} for the
trilinear single-derivative vector-boson vertex of Fig. 7, as
a consequence of both the cyclic symmetry of the vertex and of the specific

. . Hv : ; .
form (5.12) of the universal transformation, w . This cancellation is
demonstrated explicitly in the next subsection and appears to be intimately

related to the question of renormalizability, although the theorem is

likewise true for a class of nonrenormalizable interactions. That

is, the areguments, seen in the past few sections, also so through for

couplings involving factored products of single derivatives of distinct
scalar fields and of the triplet Yang-Mills structure as well as of any number
of scalar, Dirac, or vector fields with comstant couplings. Except for the
special considerations in Sec.' VIT involving neutral particles and the proof
of the O(qz) cancellation for the trilinear vector vertex given below, this
completes the proof of the radiation interference theorem for the class of

gauge theoretic interactions.
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E. Example with Yang-Mills vertex
Here we present a detailed example cf the radiation interference theorem

We consider the n=9 source graph, TG(Fig. 9) , shown in Fig. 9, for nine

reasons. The structure is designed to demonstrate the properties of the cyclic

trilinear Yang-Mills vertex and its seagull, the latter usually given as a

quadrilinear in the gauge theory rules. It also illustrates a tensor Ouv

Dirac current, multi-field vertices, a product of two scalar single-derivative

couplings, their seagulls, a Levi-Civita tenscr vertex, and vanishing

£
[S3¥ee]
charges for internal vector and Dirac particles. (The zero-charge limit

of this example will be discussed in Sec. VII.) In addition, the radiation-
vertex expansion and its notation are utilized, and its gauge invariance is
displayed.

The amplitude for the source graph can be written in terms of the

notation of Fig. 7 as

TG(Fig.g)

< _ Y., BY z= _1 . WV g 0
Ny Yopy (PosP3e PV Py, ug Oup be-mg V7 Eoop 18 M9 P1oP11

where ni::n(pi) » Ug :u(ps),v7::v(p7), and the vector propagator is
2

2 2
VBA(pB) E(gBA-p3p§/m3)/(p3—mé) . {Overall constants are disregarded
throughout this section.) Before photon emission, the momenta are related by
P]_"P2=P3=P4+P5‘P6 3

Pg=P1gt P11 Py~ Pg =Py

Charge conservation leads to the same equations, but with pi-*Qi

(5.41)

(5.42
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The radiation amplitude corresponding to (5.41) has the radiation-vertex

expansiocn
3

M (Fig. 9) =) M(WR(v) (5.43)
v=1

where the notation in (5.22) has been simplified and where v=1,2,3 refers
to the vertex at the top, middle, bottom, respectively, of Fig. 9. The
vertex radiation amplitude, M(v), can be obtained using the appropriate
current Insertions, which have been found in the preceding subsections and
which are summarized in Table L. The theorem is verified if each M(v)
vanishes in the null zone,

The first vertex radiation amplitude is constructed using the extermal
currents, (5.28), and the first (outgoing) internal current in (5.31) with
p' =Pq > all augmented by contact currents, (5.39), for the momenta in the

Yang-Mills vertex. (The contact currents include the quadrilinear YVVV

vertex.) The result is

MB(l) = YMY(pZ,pB,—pl) [% n; (- pl.snﬂ{+m“(5nf)gg
+ pj%q (pyee nz-kw 5r&) ﬂlgﬁ pj3 ﬂzﬂl (pqye gé+—wTB)]
+ 05 0] [p?l (80 “pt ~ By 9)P1
§ % (g‘ra “Br ~ gaBm‘{T) P; +Pj—?‘l (guBmYT“gBYmM)p;]
+ p?? ny myéni(gsyqa-gﬂ(aqg) ﬂgg“nYw 5”2(g odp " Bl
+ —p% ngn\l’wTS(gmqY - gwqa) (5.44)
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with its commeon factor in (5.43) given by the remainder of (5.41),

)

RB(l) = V‘A(p3)n2 cee (5.45)
Note the indicial communication between (53.44) and (5.45}. Yow

Py =Py ~1=Pg (5.46)
with the rest of (5.42) unchanged.,
MB(l) is easily checked to be gauge invariant, since uuv vanishes
under the replacement £ +q and since charge is conserved. This property
holds for the other vertices as well and is an important consequence of the
use of the radiation decomposition identities, as we have already noted.
(See subsection B.) In this regard, it is crucial that the decomposition
(5.31) produces the same outside factor (5:45) as do the external leg
attachments. Momentum dependence has to be considered carefully inasmuch as
the intermal momenta change, depending upon the photon's origin.

In the null zone, we find

Q
_ 1 _ oY e T
M (1) = by {YaTY(pz,pS, P ) [Nyn (b +py+pyte gy
&y dT a &y T QY T
+ e’ nygg +00 TN Bet TNy ]

Y _ T o T T
+ oMy [gquYT(p3-—p2) A'gBYMuT( P1 p3) +'gyum81(p2-+pl) ]

Q 8y ‘ 8
+ ZwgphyTy q_k2uW6n2n1qB'F2“86nln2 q} (null zone) , (5.47)

grouping the quantities inside the curly bracket according to powers of q.
In fact, Mg(l) = 0 1in the null zone. This complete cancellation can be

described order-by-order in g .
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First, the zeroth-crder convection currents obviously cancel. The next
six terms, linear in gq , are the first-order universal Lorentz rank-one
changes in the external vector wave functions, in the internal vector wave
function (wTB term) defined hy M

B

four-momenta of the vertex, respectively. Since these are all contracted

- T T
=Hn (B) with n (8)=g; , and in the

together, sometimes through the numerically invariant guv , Lorentz
invariance guarantees their cancellation, and an explicit calculation using
the antisymmetry of wpv bears this ocut.

We call special attention to the cancellation of the last three terms,
quadratic in g, in (5.47). This goes beyond Lorentz invariance, requiring
the cyclic symmetry of the trilinear vertex and the specific structure of

wuv in (5.13). -

The second vertex radiation amplitude is constructed using (5.%a),(5.28a),

and the second (incoming) terms in (5.31) and (5.21), yielding

Q,
e A U WV
1,2, = 55, .q (py € Mg F07N,)0,

Q Q
3 v w G ve o b z
+ 5yed (_pB.L gk4-m R)WAGvC + po-a (p5 E4‘4[¢’d])naokc
+ i A2 (-pgee - FUEAD) (5.48)
Pged 4500 Pe AL a

with the contracted remainder (pre- and post-multipliers)

\ B 3 1
Ry, = ...V (p3)(g;::7€;'v7)u , (5.49)



~50-

and with (5.42) modified by

P3=P4+P5‘P6+q . (5.50)
The gauge invariance of (5.48) is easily seen.
It is now easy to see that M(2) alsc vanishes in the null zone. The Dirac

spin currents produce the first-order Lorentz transformation of < [ef. (5.17)1,

AL
-1 1 1
boy, 27 UEdl,on 1= 5 ¢ (4,01 + 5 [£,0,, 04
8 B

which is cancelled by the (vector wave function) « terms in (5.48)
Finally, the third vertex radiation amplitude is constructed using
(5.1b),(5.9¢}, (5.28a),(5.39), and the first (outgoing) term in (5.21).

The gauge-~invariant result is

} TN 1
M(B)B = 00 {”8”91’10 11[ Pgre+7 [£,4])

Q

1 g p 3 M [N N,
poeq P77e7 5 [FaalD ] = pygryy pgra P8t g a8
Q Q
[ERRY) 10 ") g o 0
+ byed (pg-sng - n }n I+ Nghg Iw——plo.q (= pyg-EP1gTW  P1g)Py
. u (=p. eep” 4+ uwf p%p% 11w (5.52)
pryed - T117T P aP11’'P1ot 'g¥7 y
with the contracted spin row-matrix factor
R = gy (5.53)
6 6
Now (5.42) is modified by
Pg = Pig ¥ Py TPy Pg Py ¢ (3.54)
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M{3) 1is also seen to vanish under (4.1) noting first the diréct
cancellation of the Dirac spin currents as expected for a scalar fermion
coupling. The cancellation of the remaining contact and vector spin currents,
expected by the Lorentz invariance of the remaining coupling, follows from

the use of the basic identity

gquaByc= guaEuBYG + guBEQvYo + guYEano + guceazyv

(5.55)
For example,
uo_a Voo o o
w anse(u,9,10,1l) + W ange(S,v,lO,ll) + W Omee(8,9,0,11)
0o
+ = > 5.56
W ap11€(8,9,10,p) 0 ( )
h (1,9,10,11) = ¢ Vo% 0P etel e lude that the full
where £(U,7, ) = uVODngplopll s c. conclude a e fu

amplitude in (5.43) vanishes, MV(Fig. 9) = 0, in the null zone.

We leave as a simple exercise for the reader the demonstration of how the
theorem is violated, by, say, an n=3, double-derivative coupling VQVB(BQBSS)
source vertex with scalar {(vector) fields S5(V) . In contrast to MY(l)’ the
terms in quadratic in g do not cancel in this example; note that an
integration-by-parts can rearrange in the interaction into single~derivative
form, but then we would have a derivative of a vector field and the second-
order terms still arise. No symmetry leads to the cancellation of these

O(qz) terms.
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VI. RADIATION REPRESENTATION

If MT is a radiation amplitude generated by a tree source graph, it is
necessarily linear in the charges of the external particles (over and above the
original source graph couplings). Hence, if MY also satisfies the radiation
interference theorem, it has an (n-2) - dimensional first-order zero in the
space of the Q/p*q factors. [There is no ambiguity in the order of
the zero or in any analytic continuation, since the radiation vertex
expansion (5.22) is explicitly linear in the Q/p+*q factors.] In this
section, we establish a new representation of such radiation amplitudes that
makes the zero structure manifest.

The conclusions of Sec, V are summarized by the statement that each

gauge-theoretic vertex radiation amplitude-in (5.22) can be written as

E? Q.
M (V) = : (6.1)
{ G i=}. pi‘q
where
n
v
) 5,0, =0 (6.2a)
i=1
n
v
;oI =0 (6.2b)
i=1 *
n
v
eq = 6.2
i£1 Gipi q=0 . (6.2¢)

The source vertex subgraph VG has nv internal and external legs, whose
propagator factors are not included in (6.1). All legs are external in
the special case of a vertex source graph (nv==n).

Ji is the product of the photon-emission current ji for the ith leg



(the jj_ rules are summarized in Table I) and the remaining factors of the
original vertex amplitude. Examples for Ji appear in (5.44), (5.48), and
(5.52). The current sum rule, (6.2b), a consequence of translational,

Lorentz, and Yang-Mills symmetries as we recall, is independent of whether

or not the null zone condition is realized. In addition, the conservation

laws, (6.2a) and (6.2c), are independent of each other and of the currents.
The expression in (6.1) obviously vanishes for identical Qi/pi‘q by
(6.2b), and, alternatively, for identical Ji/pi°q by (6.2a), which are
the circumstances previewed in Sec. TI. We also recall that (6.2¢), in
conjunction with (b.2a) or (6.2b), is responsible for the reduction in the
number of independent Q/p*q or J/p*q factors, respectively, via (4.2).
We wish to use the algebra underlying these results to find a form for the
amplitudes that displays the first-order zeros explicitly, and which is
specifically a bilinear expansion in differences of the Q/p+q and J/p°q
factors.
The following trivial lemma will help to introduce the algebra:
Lemma 1 : If s =) ab , where | b =0, then s =) (a -a )b, , for all j
—_— A ;1 A S M
(The sum may omit 1i=3j.)
Proof : Obvious. The zero for identical a, is now explicit and a similar
0 .25

zerc for identical b, arises for 2 a_ =
i Y 1
i

Actually, we need a lemma addressing the specific form of (6.1):

Lemma 2 : If26
£ L 2
YA =) B =) C =0, (6.3)
=1 % i=1 t i=1 *
then
£ A_Bi £ A A, B, Bk
Vv 1 N L 1
L =) (5= - ) C, (= - =) . (6.4)
=1 % 421 G S PG &

for all i,k . (The sum may omit 1i=j,k.)
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Proof : Multiply out the factors. Writing A B./C. = C (A /C.)(B./C.), we sece
i1 4 i1 L i 7i7?
that (6.4) simply exhibits the invariance under Ai/Ci - Ai/Ci-+constant, ete,
The expected reduction to only {£-2 differences of Ai/Ci(or 3./C)
iti

is most directly effected by choosing j#k in (6.4). TIn the simplest case,

£=3, we may choose j=2 and k=3 obtaining

21y
c, C c,’C C ’ (6.5b)

Aany permutation of 123 is permitted in (6.5). Eq. (6.3) has been used in
passing from (6.5a) to (6.55), the factorization formula>! of Ref, 5,

The application of (6.4) to (6.1) vyields the radiation representation

M AV
of Iy( G)’

0

v
M (V) =i§l 39,4 Aij(Q) by (8D, (6.6)

where we define the (naturally occurring) differences,

A (XY = L — (6.7)
i] Pird Py-d

The freedom in the choice of j,k can again be used, as in (6.5a), to
28
reduce (6.6) teo the nv-2 independent differences ameng the Aij(Q)
and among the Aij(GJ) . From (5.22) and (6.6) we have, therefore, a radiation

representation for the general gauge-theoretic radiation amplitude.

The radiation interference theorem and its complement, introduced in

Sec. L1, are made manifest in the combination of (6.6) and (5.22).
This is because the differences (6.7) vanish for each vertex (including

internal legs}),

5..€(0) = 0 , (6.8)
i]



in the null zone. ([Recall (5.7).] Similarly,

(3Jy = 0 , {(6.9)
for identical external J/pesq factors.

Although (6.9) is satisfied in the physical region only under trivial
circumstances {for example, pi-e/pl-q-pz-e/pz-q vanishes only if Eixé in
two-body c.m. scalar scattering), MY(VG) can always be expressed in the
bi-difference form (6.6) which embodies the consequences of the symmetry
properties of the radiation amplitudes. TFrom this perspective, both versions
of the radiation theorem are by-preducts of the radiation representation.

We note that a radiation representation in which only differences in

external G/prq factors appear can be written for the complete radiation

amplitude MY(TF)' Eq. (4.2} and the linearity in the Q/p+q factors imnly that
ooQ
MAT) = ; ,.(t) (6.10)
S T T

where I, 1is independent of the charges. It follows from the radiation
i
theorem that

, (6.11)

[kl iy on
—
Il
o

so that Lemma 2 applies. Thus,

-1

M AT =}
s |

Sipi'q Aij (Q) Aik(t‘SI) . (6.12)

However, the 1. are less convenient for calculation cr for physical

1
interpretation. For example, there is no obvious gauge-invariant grouping
of terms (6.10} or (6.12). Therefore, we prefer to use {6.6) in combination

with (5.22), in which there are the same number of terms, n-2, as in (6.12).
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That there are the same number of terms follows from the fact that each
MY in (6.6) can be reduced to nv-2 terms, through the freedom in j and k,
and the fact that, for any tree graph with V total vertices and n external

particles,

) (nv-2)=r1-2 . (6.13)

Thus the preferred radiation representation (of the radiation vertex
expansion)} is in one-to-one correspondence with the minimal n -2 terms that are
anticipated by the theorem and that are seen explicitly in (6.12).

The economy of the organization of the radiation amplitude into only
n -2 terms can be appreciated when we realize that there are as many as
Zn -3 radiative graphs arising from external and internal lime photon
attachments onto a given TG {(with n external lines) and as many as 3(n-2)
more seagull terms (the maximum of 2 nv). Thus, each helicity amplitude can
be simplified, with the symmetries manifest, by the use of the radiation
representdtion, (5.22) with (6.6), particularly in view of the fact that
(5.22) is a gauge-invariant decomposition.

Let us illustrate the radiation representation using the example

depicted in Fig. 6 and given in Eq. (5.4), Implementing (5.22) and (6.6),

we find
2
M (Fig. 6) = ) M(v) R(Gv) (6.14)
1
where, by choice,
r Q Q pyee {py -pLive
f 1 4
M(1) = - Py -l - 4}[ L T G ).] , (6.15a)
P4 Pgedf (P9 P; =P,
LR (e ey .
(Pl'PA)'q Pl'q. Pq.q lpa'q pl‘q/ )
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R(1) = 3 , (6.16)

and M(2), R{2) are obtained by relabeling the charges and momenta in
(6,15)-(6.16) according to 1—+2,4+3 . The steps from (6.135a) to (6.15b)
follow those in (6.5).

This example will be c¢f use in the next section where external and
internal neutral particles are considered. 1In general, the zero-charge

limit is found to be clarified by the use of the radiation renresentation.
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VIT. XEUTRAL PARTICLES

In this section we investigate the conditions under which neutral29
external particles can be included in the radiation interference thecrem.
We also show that, although there are no new restrictions for neutral
internal particles the null zone cancellation goes through differently in
such circumstances. The examples of Sec. V and certain reactions in QFED
illustrate cur conclusions.

A. A view of the problem from the radiation representation

The radiation representation of Sec. VI makes it clear that zeros are

present in gauge-theoretic radiation amplitudes in tree approximation,

even for opposite-sign charges. For example, radiation zeros occur in the

+ +

lowest-order amplitude for the reaction ete” +e e-‘(, albeit in the
unphysical region. (This reaction is discussed further in Sec. XI,) Charge and
momentum conservation, the mass-shell constraints, and Lorentz invariance,
which are ingredients of the radiation interference theorem, can be
maintained even for the unphysical energies that the null zone condition (4.1)
may require.

A cursory look at the radiation representation might lead one to
conclude, however, that there would be no radiation zero in the presence of
an external particle r with zero charge, Qr = 0 . For a set {r} of zero

external charges in a vertex source graph, the radiaticn representation (6.6)

reduces to

Q,
! = T 5 . S _—‘L - i
) = g Sipya By (@) 8y, (5 7 %érpr q 8,80 (7.1)

where j,k#r . {Our conclusions are independent of the specific choices of
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1 and k.) The null zone condition, &ij(Q) = 0 , for the nonzero charges does not
imply that HY(VG) = (0 since only the first term in (7.1} is eliminated.

The diserepancy ultimately derives from the fact that the terms err/pr q

are now missing from the amplitude in (6.1).

The cursory conclusion is wrong. To see this note that (7.1) will wvanish

if in addition to Aij(Q) = 0 (for i,j#r) we have

E p q=20 (null zone) . (7.2)
:r

and
E Jr =0 {(null zcne) . (7.7
r

since then the second term in (7.l) is also eliminated. The first

requirement is met if (but not only if - see subsection () each neutral particle
is massless and travels parailel to the photon, precisely the conditions
expected from the zero-charge limit,30 Qr-+0, of the null zone equations,

where simultaneously we must have pr-q‘>0. This discussed in more detail in
subsection B where it is shown that, in addition, each Jr vanishes

separately when p.=d (pr°q = (0} for a (massless) scalar or Dirac neutral
external particle. A massless vector neutral particle can be included only

if it is coupled tc a conserved current. The second requirement (7.3) is

then also satisfied under these conditions.

Therefeore, the radiation interference theorem is unaltered by the
presence of the prescribed neutral external particles. (We will see in
subsection D that neutral internal lines present no problems.} The null zone
is simply the corresponding limit of (4.1). The radiation zero in the
radiation representation is no longer manifested by Aij factors alone, but
is also associated with the vanishing or, in the case of neutral internal

particles, the cancellation of currents in the radiation representation.
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B. One external neutrzl particle

Suppose that only one external particle r has zero charge, Qr =0,
the rest of the particles having nonzero charges of the same sign.
(Particle r may be in the initial or final state.) If the other n-1

external particles have equal Q/p-q factors, it necessarily follows that

p_-q =0 {null zone) s (7.4)

p_ = X q (7.5)
for constant Kr>0. [This is the same condition obtained by the Qr‘*O
limit of the null zone conditiens, (4.1).] Therefore, a single external
neutral particle of any spin must be massless and must enter cor exit the
scattering region parallel to the photon,“for a physical null zone to exist.
This agrees with (4.17) and (A.15) for Q =0, vy =1

In order to have a zero in the radiation amplitude for the vertex to

which r 1is attached, the partial sum must vanish,

F J, =0 (null zone) s {(7.6)
since Jr is absent from the sum in (6.1). (We defer the discussion of
neutral internal lines to subsection D.) Egs. (6.2b) and (7.6) imply that

J =0 (null zone) . (7.7

Hence, even though Qr = (0 , its associated Jr is still relevant as a
test current for the determination of whether (7.6} is satisfied. It
suffices to consider the factors jr which can be calculated as before with

g = 2, independentlv of Qr’ using Table I.
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The evaluation of jr for the different spins leads te the following
lemma:

Lemma I : We mav include a neutral external particle in the radiation
interference theorem provided that it is massless and, in the special case
that the particle is a vector boson, it is coupled to a conserved current
in a nonforward direction (defined below).

In the proof of the lemma, we first note that the convection current
pr-e is zero by (7.5). This is illustrated by letting Ql= 0 and p1==K1q
in the scalar example of Fig. 6, corresponding to a neutral external scalar
particle, whereupon the first radiation vertex amplitude in (5.4) or (6.15)

vanishes. (Only one null zone equation needs to be satisfied for a 3-vertex

source.)

The Dirac spin current also vanishes by (7.5) since, for example
ﬁru(pr) =0, when m_= 0 . 1Indeed, the neutrino reaction (1.13) has a
radiation zero (which is spoiled by an anomazlous W magnetic moment)3 at a
location (1.14) given by (4.18). Considering the external Dirac particle 5
in Fig. 9 to be neutral, with Q5 = (0 and Ps = KSq , the amplitude (5,48)
also can be seen to vanish in the null zone of the remaining particles.

The contact current is likewise zero by (7.3) since it involves the
contraction pow . Either particle 10 or 11 in Fig. 9 serves as an
example in this case, since they both have derivative couplings. The

amplitude (5.52) still vanishes in the null zone for, say, QlD = 0 and

Finally, the vector spin current can be written as

ol

{5
3 .7 = . 7.8
Uﬁéqr qag nr * ( )

using (7.5). Let us rewrite gq  in (7.8),

q,, = (pri"q):tf(l(ril) . (7.9)
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in terms of the momentum transferred te the vertex, which is priq = q (K _*1)
T

for photon emission from a particle in the final/initial state. (Replace

q~*-q, for photoabsorption.) Therefore, (7.8) does net contribute in the

s 32 .

event that the vector particle is attached to a conserved current, with

K #1 .

T

This last result implies that we may include additional external

photons in the radiation interference theorem. Tor example, the reaction

e”e” *e~e” Yy has a null zone where the photons are parallel and which is a

simple generalization of the null zone for reaction (4.6), e“e > e“e~ 7y . The

fact that the "first" photon must be coupled to a conserved current requires

a gauge-invariant set of source graphs. Also, one could develop a hierarchy

of radiation representations by successive application of the procedure in

Sec. VI.

A radiation zero is not present in the exceptional case, Kr = 1

That is, (7.8) does not wvanish and (7.7) does not hold if an initial-state

neutral vector particle has momentum identical to the final photon., Such a

" el " 33

forward scattering’ transfers no momentum to the vertex and, for an example,

let us consider Compton scattering,

Y+e>r7+e . (7.10)
The null zone is the forward direction, where the convection currents cancel,
but with zero momentum transfer the spin terms do not. In the forward

direction, the ampiitude is nonzero and is proportional teo

- ¥ e
e ulpryulp) ETE-MUV £ = - , (7.10L)

In (7.11), p,=qandr = g .
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Since (6.2b) is based on Poincare invariance {see Sec. IX), we should
find a simple picture for (7.7), when it holds, using momentum and angular
momentum censervation. The wvanishing of the convection current can be
attributed to the fact that a scalar particle cannot emit a unit of helicity
collinearly. A massless spinor particle cannot flip its helicity with a
vector coupling, and neither can a massless vector particle whose longitudinal
component has been eliminated. (This component is not eliminated, however,
for Kr = 1 which is the exceptional case of forward scattering.)

Tt is also notewerthy that the calculations showing Jr =0 for
massless, ccllinear particles exhibit the same mechanism whereby ccllinear
mass singularities are suppressed in infrared-divergence studies.34 Related to
this is the fact that the g #2 photon-emission factors are divergent in

-

the massless limitBJ {see Sec. V). Convergence for g = 2 is crucial for
the inclusion of neutral particles in the radiation interference theorem.

The question of gauge dependence arises for the evaluation of Jr in
the case of a massless neutral vector particle. Since we are after the
defect in (6.2b), where it is only the interactions of the necnzero charges
that concern us, the question is irrelevant; the unitary-gauge emission
factors (5.28) are sufficient for the purpose of evaluating the partial
sum {(7.6).

Nevertheless, we can show that the emission factors, (5.28), apply in a
more general gauge. Working in a general covariant gauge,36 we replace
the propagator facter (3.27) by

(L-%)p, p

_ HoV s
PUV(p) = -8 + 2

. (7.12)
Uy o -Emz
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with < = 1,0,%, corresponding to the Feynman, Landau, and unitary (m#0)

gauges, respectively. The emission factor (5.23a), for example, is replaced

by
v sqnr £
ifL{p-enu + ORI —bq] 5 (p4—q)u] , (7.13)
Pt - 2p-q+ (1L -8)m
where (5.28a) 1s recovered in the limit 5 = . It is seen that, regardless

of the values ¢f % and m , the presence of a conserved current eliminates
the (p+q)u term in (7.13). The factor (5,28) is similarly gauge and mass
independent, with a conserved current. Thus the vanishing of jr in the
unitary gauge for a massless vector neutral particle coupled to a conserved
current helds in any rauge.
C. Additional external neutral particles

The gsituation is summarized by the féllowing lemma:
Lemma II Lemma I applies independently of the number of neutral external
particles.

In proving lLemma II, we simply note that radiation zeros can occur if
each neutral particie r satisfies the criteria of Lemma I : Conserved
currents for "nonforward" vector particles and masslessness., The zeros arise

in the following null zone specialized to a set of neutral particles I[r}

ﬂij(Q) = 0, i,j#r . (7.14a)
.q =20 = . 7.14
P-4 » (p=Kaq ( b)
This null zone is consistent with the limit of {(4.1). The set of such

neutral particles and the photon can be regarded as a massless composite and
can easily be included in the discussion of a physical null zone (see the
Appendix}. By (7.14b) and the arguments in B, each of the missing currents

ig zer>, so that (7.6) is true for each vertex.
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The question we now comsider is whether the sufficient conditions (7.14)
are also necessary. Could the null zone be larger? To address this suppose
that there are n <n - 2 external neutral particle529 at a given vertex,

If the remaining n-ng particles have the same Q/p-q <factor, then the

generalization of (7.4) is

Prq =0 (null zone) y (7.15)

where P 1is the total neutral momentum,

o)
"l

(7.16)

R
(]
o

(Cf. (7.2)] Therefore, P must be light-like, P = q , if the neutral
particles are all in the initial state, or all in the final state. In such
cases, each P, satisfies (7.14b).

We now consider the alternative possibility corresponding to neutral
particles in both the initial and final states, where (7.13) does not lead to
(7.4} for the individual particles. However, we still require (7.6) for each
vertex, so that the sum over the currents Jr for the neutral particles at
cach vertex must vanish by (6.2h). Postpeoning the possibility of
neutral internal particles until the next subsection, the
vanishing, for arbitrary photon polarization, of the total convection current
in this sum, p-£, necessgitates P « q . (It is to be emphasized again that
a radiation zero, as we have defined it, refers to cancellations that are not
peculiar to the various polarization states.) The spin and contact currents
could cancel by TLorentz invariance. The conclusion is that we can augment
(7.14) but only by configurations where the momentum transfer is lightlike
and where the neutral sector in each vertex factorizes in a Lorentz invariant
manner such that its spin and contact currents are not needed to cancel the

currents in the charge sector.
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D. Internal nmeutral particles

We now verify that the radiation interference theorem heolds without
qualification for neutral intermal tree lines, as it might be expected in
view of the fact that the null zone condition involves only the external
particles. The limit QI + 0 after the imposition of the null zone condition
(4.1) obviously shows the standard cancellation within each vertex, in
terms of the radiation vertex expansion, (5.22), where the appropriate
radiation decomposition identity (see Table I) has been used, with QI/pI.q
nonzero and equal to the external Q/p-q factors.

The case in which we are interested, however, is QI = 0 , ab initio,
which will be shown to involve cancellations between vertices. Trom the
absence of the photon coupling to each neutral I, there is a JI missing
in the expression {6.1) for each of the pair of vertex amplitudes. The
fact that the two vertices now conspire in the null zone cancellation can be
stated as a lemma:

Lemma III : The two defects in the respective terms of the radiation vertex
expansion, (5.22), due to a given neutral internal particle, cancel each
other in the null zone. (The conditions for the radiation interference
theorem are assumed to hold.)

The proof of Lemma IIT follows by noting that the sum of the two defects

in (5.22) is proportional in the null zone to

D" § ") + 5, (PID(p) (null zone) (7.17)

since the remaining factors in the MYR products are the same. In {(7.17) the

subscript I is suppressed and the currents j refer to the vertices
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that the internal line has left and entered {(and can be found aleng with the
propagator D in Table I). Also, p' = p - q .

In fact, (7.17) can be seen to be zero an argument based on the
radiation decomposition identity (Table I). From a consideration of the
originél photon coupling to the internal line or vertex (the left-hand-side),
the decomposition (D'j' + j D) /p-q (the right-hand-side) must be regular at

p-q =0 <QI factors out.), Thus the expression in (7.17) vanishes in the

null zone, where we must have from (7.14) that

p'q=7p''q=9 {null zone) (7.18)
for any neutral internal line p . [CL.(7.4).]
The vanishing of {7.17) establishes the lemma and allows us to
regard a neutral line as a short-circuit between two vertices, leaving a
composite gauge-invariant vertex that could be used in a reorganized radiation
vertex expansion. It is noticed that none of the restrictions on external
vector particles is needed for a neutral internal vector line. The defects in
{(7.17} have been correctly calculated, even if the neutral internal
particle is a photon. Another gauge - see (7.12)-may be used with the same
result.
Let us illustrate Lemma IIl by explicit verification for the various cases
and with the examples in Sec. V. First, note that (7.18) does not imply
that p and p' must satisfy (7.5), in contrast to external particles, so that
in general
pre=9p'-e#0D (null zone) . (7.19)

However, (7.18) does imply that

P =P {null zone) . (7.20)
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and hence the propagator dencminators can be ignored in the demonstrations
to follow.

Ve now evaluate (7.17), for the different particles and interactions
relevant to the interference theorem, showing it to be zero in each case.

For = scalar with constant couplings, (7.17) is proportional to

p'€ - p-€ =20 . (7.21)
If the scalar particle has a single-derivative coupling, given by Py

{(r, = Bag in Sec. V.D) in the absorbing vertex, the relevant expression is
p! p'-€ - p p-E+w &p = - p-qe_ =0 (7.22)
a a o o a ?

by (7.18). Tf we add the derivative coupling p% to the emitting vertex
as well, we find, similarly,

' ', ' %y _ o -
pg(p ep. + W pa) + ( pgP-€ + @ pa)pT 0 . (7.23)

An example of a neutral internal scalar particle can be constructed
from Fig. % and (5.4). We set Ql = Q4 . Q2 = Q3 so that Q5 = 0 and the
null zone corresponds to the subsequent limit P1'd ¥ D,9:Py g P59
The amplitude in (5.4) is zero in this null zone, but only by a cancellation
between the square brackets. [A careful examination shows that (6.15)
is not zero in this limit.]

A neutral Dirac internal line version of (7.7), with censtant couplings,

is proportional to

(@' +m G e+ (64D - (e + 7 LADG+m =0, (7.2
by (7.18-19). An example of this is found in the null zone cancellation, for
Q6 = 0 in Fig. 9, between the fermion defects in (5.48)-(5.49) and (5.52) -

(5.53).
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In the neutral-vector, internal-line case we reduce (7.17) to
P (p')(p'-EgB +ow B) + (-pegg 4 w )P (p) = 0 (7.25)
vB ) § 2 v T ad : .

The cancellation for Q3 = 0, in the example of Fig. 9, between the
vector defects in (5.44)-(5.45) and (5.48)-(5.49) illustrates this case.
In the case where a neutral vector is emitted by a constant coupling

and absorbed by a derivative coupling Py , (7.17) reduces, via (7.18) and

(7.25), to

' ' L B B . o o
pGP“-(’S(p Y(p'regg + @) +p (op e, W, DN

O 03 _
T PPLstP) - a8 R p) = 0 (7.26)

The last two terms, on the left-~hand side;'are the contact and momentum-shift-

times-spin-current terms, respectively, and serve to promote P to pé in

the second term. Derivative couplings at both ends go similarly.
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VIII. EXTENSTONS TO NONGAUGE INTERACTIONS AND CLOSED LOOPS : A LOW-ENERGY THEOREM

We now consider interactions more general than those defined as gauge
theoretic. The additional interactions involve first or higher-order
derivatives of Dirac and vector fields (other than the Yang—iills form)
and/cr second or higher-order derivatives of scalar fields. TIf we also allow

closed loops, the source graphs can now be entirely arbitrary.

On the basis of what we have learned from the null zone cancellation
for tree graphs, we present a low-energy theorem for any source graph in
subsection A, followed by a simple example in B. The role of closed loops in
radiation and a category of source graphs with closed lcops for which the
radiation interference theorem still holds are both discussedl in C.

A. A low-energy theorem

The following theorem is a corollary of the radiation interference

thecrem:
Liull zone low-energy theorem : For any source graph SG ,with g = 2
external legs, the radiation amplitude can be written as
M (S )=MA(S)+0 8.1
(50 =M (s + o), (8.1)
where MY satisfies the radiation interference theoren,
MY =0 {null zone) R (8.2)

and has a radiation representation. See (2.9-10).
This theorem can be understood as the union of the standard low-energy

28,329
theorem for bremsstrahlung

and the radiaticn interference theorem. In the
atandard low-energy theorem expansion for a given reaction the leading

(infrared) term (3.18) vanishes in the null zone; the next-order {snin and contact)

term alsc vanishes in the null zone provided that g = 2 for the external particles.
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We define an effective tree graph substructure cf SG by the
result obtained when all closed loops are contracted to points. We then

consider an effective vertex radiation amplitude

- &ty
Mo(v ) = (8.3)
) =L p.°q
in direct correspondence with (6.1). The infrared (linearly divergent)

terms in MT correspond to convection terms in the effective currents Ji
which are zeroth-order in g and which cancel in the sum, EJi » by

virtue of momentum ecnservation. The zeroth-order tewms in HY correspond toc the

first-order spin and contact terms in Ji; these first-order terms cancel
in the same sum by Lorentz invariance, provided that the photon couplings

to the fixed lines in the effective tree graph correspond to g = 2 . Since
there is no general mechanism for the cancellation of higher powers of gq,

(6.2b) is then replaced by

77 = 0(gD) . (8.4)

i
The nonvanishing right-hand-side of (8.4) is the result of nongauge
derivative couplings and closed loops.

The contact currents associated with the nongauge couplings and the
closed-loop graphs40 are straightforward to determine. The term that is
linear in q in the expansion of the radiation graph where the phcton is
attached to an exterior leg of the closed loop or to a leg connected with
a derivative coupling yields the momentum-shift part of the contact current.
The seagull can be derived by requiring gauge invariance for both cases.

(Altarnatively, for the closed loop, the linear term from the graph where

the photon is attached to the loop itself vields the seagull.)} See Sec. V.D.
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Although the external spinning particles are required to have g = 2,
anomalous mements for internal particles contribute onlv at the 0(q) level,
according te (5.23) and (5.34). Therefore, the internal lines need not have
their photon couplings restricted to g = 2 in order for the null zone
low-energy theorem to hold. For example, in the Dirac decomposition (5.21)
internal g #2 corrections correspond to quadratic terms in the aumerators.

The zeroth-order and first-order terms in the Ji’ which sum to zero,
serve to define MY in the statement of the null zone low-energy theorem.
It follows from Sec. VI that MY has a radiation representation. The
quadratic terms associated with the Yang-Mills source vertex, which are the
only higher-order terms in gauge-theoretic interactions and which cancel
cyclically, could be included either in @Y or in the 0(q) remainder of
(8.1). This ambiguity shows that the null zone low-energy theorem is not
equivalent to the radiation interference theorem, but is more properly called
its corollary. On the other hand, the content of the full radiation
interference theorem is the remark that the 0(q) terms in {8.1) are zero for
cauge-theoretic couplings and tree graphs.
B. Example of the theorem

We first derive the standard low-energy theorem for the n = 3 radiative
decay, 1 > 2 + 3 + v, where the charged particles are all scalars. The
amplitude, illustrated in Fig. 10, separates into external and internal
radiative parts,

ext int(q)

M, (Fig. 10) = 4%*°(q) + M (8.5)

2
If D(mi,m2 m3) is the amplitude for the source decay, 1 -~ 2 4+ 3 , then

2!
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t Ql 2
(q) = T pa q P17 Dpy - o, 2, m,)
Q Q
2 2 2 2 2 2 2 2
= . + + .
+ o Py € D(ml,(p2 q) ,m3) pyrd Py D(ml,mz(p3+q) ). (8.6)
The expansion of (8.6) in q leads to
Ry ) M LM+ O(g) (8.7)
where
Q Q Q
1 2 3 2
M = (- —— e+ — T -£) D(m ST, ) . 8.8
Y P4 P1 Py P2 Py*q P3 2*" (
T } g B . 3 2 2
A= 2(Qupyte 5+ QP tE 5+ QgpgtE =) D(ml my,my) (8.9)
am 3m - Bm
1 2 3
Hint is infrared convergent and can be expanded as
0y = w0y + otq) (8.10)

In order te proceed further, we may follow either the approach of Ref.

or of Sec. V.D. The former approach centers on the observation that if
quf‘l = O(qz) for arbitrary q, and if fU is independent of g , then
b

f =0 . In our particular case, such an fu can be defined by
MRV Mty (8.11)
because MY is separately gauge invariant. Therefore,

1nt
(0) = « AM , (8.12)

50 that

MY(Fig. 10) = MY-FO(q) . (8.13)

39



The approach cf Sec. V.D is to relate AM in (8.9) and Hlnt(G) in
(8.10) to the momentum-shift and seagull terms, respectively, in the contact

current (5.39). The vanishing of the contact current fellows from the identity

pi muv pz = 0 and corresponds to (8.12). [For the external leg i, p=r= Py
in (5.38).]

As suggested by the notation we have used, the explicit {(infrared)
leading term in (8.13}, MY , given by (8.8), vanishes in the null zone. The
remainder, which does not wvanish in the null zone in general, is 0(q). The
statement of the null zone low-energy theorem has thus been verified. In a
more complicated case where spin currents lead to zeroth-order terms in
(8.13), these terms can also be incorporated into M# provided that g = 2
holds for the external particles with spin.

We note that the gauge-invariant radiation vertex expansion is
useful in the general construction of low-energy thecrems. In particular, it
is well suited for dealing with the complications arising from cancellations
between the two ends of a fixed internal line, from the effective-tree
organization of graphs with closed loops, and from the definition37 of 0(q).

The null zone low-energy theorem leads to a larger range of experimental
tests, since we do not have to restrict ourselves to perturbative tree graphs.
Some of these possibilities are proposed in the conclusions, Sec. XI.

C. Closed loops

The existence of amplitude zeros, which is central to the radiation
interference theorem, at first sight may appear to violate the uncertainty
principle. We do not expect, quantum mechanically, teo find an exact

cancellation in the interference among the various radiators at a specific
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point in momentum space, unless there is complete uncertainty in the particle
positions. Indeed, the theorem refers only to the tree approximation where
the radiation is controlled by the classical currents of plane wave states;
corrections from closed loops which provide ccordinate correlations are ex-
pected to fill im the radiation amplitude zercs. In this respect, radiation
zeros are in marked contrast to the exact amplitude zeros due to conservation
laws such as angular momentum.

The absence of a radiation zero for particles with g # 2 (see Sec. V) is
an example which can be attributed to quantum effects inasmuch as closed-loop
radiative corrections give rise to anomalousz magnetic moments. {In
fact, the basic content of the Drell-Hearn-Gerasimov sum ru1641 is that
deviations from g = 2 must be due to internal excitations.)

We recall from (8.1), that a violation of the interference theorem appears
as an 0(g) contribution that has no radiation zero. In this context, the
decay 1 + 2 + v provides a simple but instructive example (cf. Sec. IV.C).

A physical n = 2 decay automatically satisfies the null zone condition so that
MY vanishes identically. However, closed loops and nongauge couplings must

lead to nonvanishing 0{q) contributions, unless another mechanism intervenes.
Indeed, closed-loop amplitude542 for W ey do not vanish and are 0(q), when
lepton number is not conserved. Although the n = 2 decay amplitude is
identically zero to all orders for scalar particles 1 and 2, this is due to
angular momentum conservation and the vanishing of its higher-order corrections
can not be interpreted as a radiation zero.

The existence and position of a radiation zero does not depend on the spin
of the external (or internal) particles and, moreover, does not depend on
masses, charges, and momenta except in the (/p-g combinations allowed by

the null zone condition (4.1). By changing these parameters, one may test
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for a radiation zero. In the case of the n = 2 decay, adding spin

"angular-momentum' zero. As another example, the general

eliminates the
amplitude, including closed loops, for the electron bremstrahlung reaction
(4.6) would vanish by an angular momentum argument in the null zone (4.1),

if the electrons were identical scalar bosons. Adding spin removes the
angular-momentum Zerc in the high-order closed-loop amplitudes. On the

other hand, adding closed loops removes the radiation zero, in general.

The previous remarks suggest two categories of closed-loop amplitudes
for which there are amplitude zeros in the null radiation zone:

Category 0: This is the trivial class where the amplitude and its
higher-order corrections vanish in the null zone because an additional
mechanism, such as angular momentum conservation is operative in a subregion
of the null zone for certain charge, mass, and spin assignments. Such
mechanisms may be deactivated by changing the assignments or moving to
another part of the null zone. Such closed-loop amplitude zerus are not
radiation zeros.

Category l: This is the class of source closed loops that produce no
correlations or corrections to g=2 . We have in mind scalar self-energies,
which can be included to all orders (see Sec. V.A), and "neutral"” closed
loops. Tf a closed loop is completely neutral (meaning there are no photon
couplings to its internal lines with no charge transferred to it by extemal
particles at any of its "external” vertices) and if the loop can be factorized
s0 as to leave a Lorentz-invariant tree structure in the remainder, then the
null zone cancellation can proceed according to that tree structure. It is
noted that, if Api is the momentum transfer to a neutral loop through its ith

neutral leg, Api-Apj is invariant under photon emission from external lines,
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since &pl-q = 0 in the null zone. See the related remarks in Sec. VII.C.
Box graphs are closed loops that produce correlations. Self-energy
source loops for spinning particles lead to g #2 . These examples do not

belong to category 1.



IX. PHOTON COUPLING : POINCARE TRANSFORMATIONS AND BMT

We have established the relationship between the form of the spin and
contact currents in gauge theories and the first-order terms of a universal
homogeneous Lorentz transformation. In addition, the cancellation of the
convection currents in the null zone depends on momentum conservation, implying
a relationship to translational invariance. In this section we unify these
ideas in terms of the Poincaré group of transformations, relating the currents
to the appropriate generators. We also find an important connection between
the BMT equations and the null zone cancellations, where a universal
transformation also arises.

A. Poincaré transformations

Let us recall the universal Lorentz transformation {5.12),

A = g + Aw, N (9.1)

in first order, where A has the dimension of a length and represents the

freedom in normalization. We may rewrite (5.13},

Awuv = qudv - quV R (9.2)
in terms of the space-like four-vector

d £ Xe . 9.3

U u (9.3}
(d2 = - lz) which is transverse to q and has the same dimension as A

The generalization of {(9.1) to finite X is exp(Aw) or

2

A
LY - SR S (A RN 7 9,9, (9.4)

2
(It is always assumed that q = q-¢£ = 0.) Since

H ke
n A -
Yagt R Sapg

y = q: R (9.3)
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we see that the ﬁuv form an Abelian subgroup of the little group E2 defined
43 |
by q. We alsc see that ' generates gauge transformations on the
polarization wvector €,
AL Kqu . (9.6)

An important result of Sec. V is that the spin and contact currents can
be written in terms of the universal first-order term in the Lorentz
transformation (9.1). In addition, we observe that the convection current
p-€ can be understood as the universal first-order term in the translation
(elP-@ > 1 + ip-a) in the direction €. Since the relative normalization among
the currents is fixed, we must have a = d . The length dU then appears
universally in the generator (9.2) for the spin and contact currents and as the
displacement for the convectien currents. These circumstances suggest that we

consider the full Poincaré transformation P = {J,A} :
x' = Ax +d . (9.7)

Each of the current constributions in Table I can be expressed universally in

terms of the first-order Poincarée transformation P acting on the particle

wave functions. {The internal currents are understood, via the decomposition

identities, as transformations on bilinear wave functions.)

The vanishing in the null zone of the radiation amplitude for tree
diagrams in gauge theory can thus be described Iin terms of Poincaré symmetry:
The convection current cancellation by translational invariance and the spin

. . . 44 .
and contact current cancellation by Lorentz invariance. {The Yang-Mills
cancellation involves additional symmetry.)}

To explore further the connection to Poincaré symmetry, consider the

1

electromagnetic current Jrl in lowest order. The current has a Gordon
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Lol 45
decomposition into the separately conserved convection and spin currents,

%4—-)-
T U T
Jcorw - ;le“jo Qj ’ (9.8)

JU

YT
' ‘.S#ﬁ
spin

= 20,5, sy, (9.9)

where the spin indices of the fields | have been suppressed and where

+

it

. or T/2m as the case may be. The summations in (9.8) and (9.9) are

over all charged particle fields.
The spin tensor in (9.9} is
, scalar,
T Dirac (9.11)

uu\) R

[¥2]
1l
I
P RO O

(8,68up ™ B p8ug) » Vvector

The indices ¢,p 1in the vector case are those of the fields in (9.9},

The spin-current Lagrangian, - J:pinAu , corresponds to the interaction
Hamiltonian,
v Tin o oMYy
. . = §1ijjs ijuv , (9.11)
which, for the S given by (9.10}), implies the gyromagnetic value, g = 2,

Iy

for each particle with spin. Therefore, (9.10), which is also the set of
matrix representations ¢f the generators of Lorentz transformations on spins
0, %, and 1, respectively, exhibits a direct connection between the spin

4
current and the Lorentz transformation of the fields, 6 but only for g = 2.

B. The BMT analysis and the null zone

Since the radiation amplitude is linear in the photon field, the
correspondence principle implies that there should be a classical counterpart
for the relationship of g = 2 to the universal Lorentz transformation found in

o

Sec. V. Let us investigate this point for a classical particle with spin
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moving in a slowly varying external electromagnetic field ng . Our neglect

henceforth aof forces dependent upon the gradients of the fields is consistent
with the fact that the null zone cancellation involves only the first two

orders in gq

[ShY

The motion of a particle with charge Q and mass m moving in F is
4
described by 7
1
du” _ Q gV
T oo F u,, , (9.12)
where u 1is the four-velocity and T 1is the proper time. The BMT
. ; , . . 47,48
equation for the four-polarization s of the particle is
daT Qg L0 e gy g oA (9.13)
dt m 2 voom 2 A v : )
with gyromagnetic ratio g . A significant and well-known feature of

(9.12) and (9.13) is that, for g = 2 , the changes in u and s 1in time

dT can be described in terms of the same infinitesimal Lorentz transformation,

Ly = g+ 2B dr (9.14)

Consequently, in proper time dT, the orbital and precessional frequencies of
the particle are identical.
What is of interest is the situation invelving a system of particles
, . HW .
moving in F . 1In order to compare the lorentz transformation (9.14) for
each particle we refer to a single common observer at a {(retarded) time ¢t ,

4
which is related to the particle times t' by K

dt = dt' (l-n.v) = Réﬂ ac' (9.15)

- ~
Here v (E) 1is the velocity (energy) of a given particle and n is the

unit vector from this particle to the {(distant) observer such that n = (l,n)
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is a light-like 4-vector proportional to the radiation wave 4-vector.

From (9.14), (9.15), and dt' = EdT1/m

¥

v o= Q@
dhy T gom Py 4 (9.16)

At a given time, all particles with identjcal Q/p-n and with g = 2 are

observed to have the identical response to the presence of a constant external

field. The condition of identical N/p-n is equivalent to the null zone condition
since the photon energy can be scaled out of the equations in (4.1}, (An

initial particle simply corresponds to an earlier t' than does a final particle.)
The first-order Lorentz transformation (%.16) can be compared to (9.1) by
keeping in mind that mUV is the Fourier transform of the radiation counterpart

to Fuu . lAlso, the role of the translation in Poincaré transformations is

implicit in the integration of (9.11).]
Thus all Lorentz invariants constructed of UisS, and their derivatives,

such as those that arise in the Lagrangian, are fixed in the time interval during

which all Q/p-n are equal (and g = 2). [Equivalently, we may think of making an

instantaneous Lorentz transformation which cancels (9.16).] In this sense, a

system of particles in its null zone experiences no linear response to a

slowly varying external field, If we now identify Fuv with the radiation field,

then this result corresponds to the radiation interference theorem.
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¥. EXTENSIONS TO RADIATION OF OTHER GAUGE BOSONS

In this section we investigate the extent to which the radiation inter-
ference theorem applies to the emission/absorption of other massless gauge
bosons hesides the photon. We also briefly discuss the emission of other
kinds of particles, with different mass and spinm.

A, Other gauge hosons

The radiation interferemnce theorem, the radiation representation, and the
associated corollaries can be proven for an arbitrary gauge group, G, where
the role of the photon is assumed by the massless gauge boson(s), g, assigned
to the adjoint representation of G. If the generalized "charges", calculated
from the representations of G to which the particles belong, are conserved,
then it is easy to adapt the previous line of proof. Generalizing from the
U(l) case considered previously, the current for g emission has a dual con-
nection to both internal-group (G) transformations and space-time Poincaré-
group transformations and the invariance under each group can be exploited.

Our task is facilitated by the results5 of Goebel, et al., where the
four-body amplitude zerc has been related to factorization for general G, and
where useful notation is introduced. The analysis of Ref. 5 is limited to an
n = 3 vertex source graph, in our terminology, and our first step is to
generalize their work to am arbitrary n-vertex source graph.

We assume that g has local gauge couplings to all other particles (possi-
bly including more gauge bosons g), which belong to the various representa-
tions of G and whose couplings are invariant under G. If we use Feynman rules
in factored form, the n-vertex source graph can be written as a preduct of an

internal-group factor and a space-time factor,



Sy = Palaz"'a V(pl’PZ""’pn)’ (10.1)

which are invariant under G and Lorentz transformations, respectively. The
space-time factor V is identical to that for the previous special case of
the photon, G = U(1l). The internal-group factor I' is the Clebsch-Gordon
coefficient of G for the n-particle coupling, labeled by the internal symmetry
indices a, which refer to the wvarious representations and which are tied
together in an invariant fashion

The complete g-emission ''radiation" amplitude, whose source graph is
given by (10.1), has the same general structure as (6.1} with the same space-

time current Ji ,

24
v 2§ i . (10.2)
& 1 P;a
The gauge-boson couplings,
g
g=T .. e T
i ala2 ai-lbai+l an baai ’ (10.3)

where a sum over b is understood, represent a generalization of the U(l)

charge. Here FEaa is the Clebsch-Gordan coefficient for the 3-vertex which
couples an incoming particle i, the gauge boson g (with index a), and an

outgoing particle with index b

Common factors,

RS , all i, any j, (10.4)
P;°4 Pj'q

lead to the vanishing of the amplitude in (10.2) in familiar fashion. In

addition, the generalized charges also sum to zero [cf. (6.2a)],
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Jsaf=0, (10.5)

since the fact that g is in the adjoint representation of G implies that
Fgaa, refers to a matrix representation of the corresponding generator in G.
[Owing to the G-invariance of the source graph, the complete sum of the
charges in (10.2) is zero, corresponding to a vanishing total commutator and
yielding (10.5).] Therefore, an n-2 double-difference radiation representation
can also be obtained for (10.2}, with the qualifications concerning any
derivative couplings in Ji the same as in the photon case.

We next demonstrate that the above results can be extended to tree graphs

with internal lines. The emission of g from any given internal line involves

the G-space factor,

bac & - (10.6)

in which the "left'" vertex, with coefficient Tt , is conmnected to the "right"
vertex, Fg by the original internal line, 650’ in the source graph. The
other source-graph indices and Clebsch-Gordan factors are suppressed in
{(10.6). The remaining task is to generalize the radiation decomposition
identity to include (10.6}.

Referring to the schematic in Fig. 5, we associate FEac first with Fi
and then with TL , respectively, in the corresponding emission terms of the
decomposition identity so that rhere 1is a complete set of con-
served charges, analogous to (10.3), associated with each source vertex.
This thus gives a generalized gauge-invariant radiation vertex expansion.

The radiaticn interference theorem, its corollaries, the radiation representa-

tion, and the other photon results all generalize to G with the replacement

of Q. by QF
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Dongpei6 has worked out SU(2) and SU(3) examples corresponding to n = 3
that provide useful illustrations of the above results. Suppose that the
3-vertex source graph is the spinor-spiner-vector coupling, @YuTawvz , where
the Dirac particles, 1 and 2, and the vector particle, 3, belong to the
fundamental and adjoint SU(N) representations, respectively. Then the

censtraint, Q%/pl'q = Q%/pz-q , becomes

(T T ) (T, T)
ab ij baji

— 1 (10.7)
Py 4 Pyq

Solutions for equal masses are given in Ref. 6,

There is a practical limitation to the observation of certain non-Abelian
radiation zeros which has been noted previously in the 3-vertex case.6 In the
case of QCD, the gluon is coupled to (presumably) unobservable color charges.
Therefore, the color-singlet physical states are connected to quark and gluon
particles only through color averaging and summing. Since their positions
depend on the charges, the amplitude zeros are smeared out in the physical cross
sections. We emphasize, however, that the radiation representation for the
gluon amplitudes remains valid.

B, Other spins and masses

We have noted that the vector character of the gauge bhoson is essential to
the association of the currents with Poincaré transformations. Thus, spin-one
particles and lLorentz invariance appear to go hand-in-hand in the crucial null
zone cancellations, a relationship that is absent for the emission/absorption
of particles with other spins.

Nevertheless, cother spins and relationships should be investigated. We
have in mind graviton emission and Riemann invariance, as well as superfield
emission and supersymmetry. These questions are not addressed in this paper,

but the search for currents that satisfy analogous dualities may be fruitful.



Finally we consider whether the results can be extended to (Abelian or

_ . , , 2
non-Abelian) vector gauge bosons with mass. Let us consider o # O,
addressing the two cases where the radiated vosen is virtual (e.g., lepton
scattering and ete™ annihilation) and where it is real with nongero mass

C , . .
(e.g., 2 production in electroweak thecry). We note that gee = 0 still
holds in both, but q-£ should be retained in order to check gauge invariance.
(In the virtual case we assume that et represents a conserved current
source. )
. . 2
We now reconsider the calculations of the currents for g # 0. We find

that the convection and Dirac spin factors in Table T for both external and

decomposition~identity emission factors are changed only by the replacement

SN Ql - (10.8)
P+q Prqtiq
for outgoing {(+) or incoming (-) particles. (Strictly, the gauge-invariant

convection current is +pe£+*qgec .} The vector-particle spin factor requires

two changes, (10.8) and

1 2 ]
wuv - wuv + 2m2 (ptq)u [q e, ~ 4 Eqv] R (10,9)

where pPxd jis the momentum of the vector particle between the source vertex
and the emission. The change in (10.9) does not contribute in the event that
the vector particle is itself coupled to a conserved current. However, if
gauge invariance requires seagull contributions, the contact current of

Table I is significantly altered,

gu IV

Wi, T pu+1/z[q268f(q-6)qg]

, (10.10)

Evidently, Lorentz invariance does not also imply the cancellation of the
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new term, appearing in (10.10), in the EJi sum.

Another difference is that the new factors (10.8) cannot be equal in
the physical region, in general.SO The absence of physical null zones
corresponds to the absence of asymtotic radiation fields (r—l behavior).
Furthermore, there is no analeog te (6.2¢c) for the denominators, unless the
number of particles is unchanged during the collision, so that we cannot
generally reduce the number of differences from m-1 to n-2. Despite these
remarks, we can again write a radiation representation, in terms of n-1
(or n-2) differences or products of differences, depending on whether (6.2a)
and (6.2b) are valid. A simplified, gauge-invariant expansicn follows.

In the case of broken gauge symmetries such as the SU(2) x U(l) electroweak
theory, the radiation interference theorem holds in the approximation at
high energies where masses are neglected. In this connection, see the

- +
angular distributions for the reaction qq = W z° in Ref. 3.
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XV. SUMMARY AKD FUTURE DIRECTIONS

This paper contains an elaboration of the details underlying Ref. 1 as
well as new results about the occurrence and implications of zeros in gauge~
boson amplitudes. In this section we summarize our principal results. We
also discuss what appear to us to be important and interesting future
directions.

A. Summary

We have found that there are zeros in every tree photon amplitude,
provided only that any derivative couplings involved are of renormalizable
(minimal) form or are products of such forms. Gauge theories are just such
theories. The positions of the zeros depend only on the external charges and
momenta through the ratios Q/p-q, are independent of spin, and may lie in
both physical and unphysical regions. This result can be extended to other
massless-gauge-boson tree amplitudes,

We have introduced a useful radiation vertex expansion, (2.5) or (5.22),
EMY(VG)R(VG)' The complete set of Feynman diagrams for the photon (or other

massless gauge boson) attachments to the source tree graph T is thereby

G
rewritten in terms of radiation vertex amplitudes M#(VG)’ each of which is a sum
ZI0J/p+q over photon attachments to VG calculated as if all vertex legs
were external. Consequently, each MY(VG) is separately gauge invariant
(under electromagnetic gauge transformations). The radiation decomposition
identity is instrumental in effecting this reorganization. (cf. Table I.)

The general form IQJ/p.q for the radiation vertex amplitude clearly

exhibits the basic algebra leading to the radiation interference theorem and

its complement. If Q/p-q (J/p-q) 1is the same for all legs of the vertex,
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and if IJ =0 (ZQ = 0), then MY(VG) = 0 . (For simplicity, we have taken8
all particles as outgoing.} As a consequence of 2-J = £Q = Tp.q = 0 ,

MY(VG) can be rewritten in the form Zp-q(Q/p:q - A)(J/p-q-8B) for any

A,B. The radiation representation (6.6) is obtained by choosing A(B) to

be a particular factor Q/p-q (J/p-q). The two interference theorems are

made explicit with such a representation,

The fundamental relation underlying the radiation interference theorem
is IJ = 0, which might be called the Poincaré-Yang-Mills sum rule or
conservation law. Noting the conservation of charge, Z0Q = 0, we see a dual
role for the electromagnetic (or other gauge group) current: The current
generates transformations in the internal gauge-group space and also, in
effect, generates transformations in space-time. (After factoring out Q/p-q,
the convective current effectively generates a universal displacement, the
spin current effectively generates a universal space-time Lorentz
transformation of its associated wave function, and the contact current
effectively generates the same universal Lorentz transformation of its
associated derivative coupling. See Table 1.) In this way we can view the
massless gauge boson as characteristic of the adjoint representation of both
the internal gauge group and the relevant little group, whose attachment
generétes the product of the first-order gauge and Poincaré (displacement
and Lorentz) transformations, provided we have the prescribed derivative
couplings. Poincaré and Yang-Mills syrnmetries51 are thus responsible for
&J = 0 which gives the null zone cancellation.

The existence of the radiation zeros has important algebraic significance,

whether or not they occur in physical regions. As an added benefit, it is not

difficult to find realistic reactions whose null zones overlap with the
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phvsical regicen. A physical null zone theorem has been given which states
that if particles have the same Q/m ratios (more generally, the common value
of Q/m for the initial state may be different from that for the final state)
then we can always find, at any c.m. energy, physical regicns where the
radiation zeros occur (i.e., where all Q/psq are equal). The 0Q/m
restriction can be relaxed for any particle that is massless; we note that
the physical null zone is generally smaller for particles with mass,

We have also studied physical null zone limits for more general Q,m

values in the n=3 case and for equal Q/m in n=-4.52

In such studies,
we have used an amusing identity, (4.2), based on the simple remark that
(a+b}/(A+B) = a/A if a/A = b/B. This is alsoc used in the reduction of the
number of independent Q/peq factors and in the demonstration that the internal
QI/pI-q factors are equal to the external Q/p+q factors in the null =zone.

We have shown that the radiation interference theorem applies in the
case where there are additional neutral external particles provided that
these additional particles are massless (and couple to conserved currents
if they have spin 1). The null zone requirement for the massless external
neutral particle r (Qr= 0) 4dis that it must travel in the same direction

as the photon (pr-q==0) , which implies that Jr= 0. The analogous remark

for the complementary interference theerem is that Jr==0 would require

Neutral internal particles, however, do not have such restricticns.
In the example, e e +e e v, discussed in Sec. IV, the electron emission
currents cancel in the null zone across the neutral internal photon line
in each of the crossed and uncrossed source graphs individually.

We note that the radiation representation applies independently of the

values for Q/peq. In particular, it applies irrespectively of whether there



~92-

are neutral particles or whether such particles satisfy the special criteria
of masslessness and conserved-current couplings in the external case.

The radiation interference theorem is the statement that gauge-theoretic
interactions preserve the classical (infrared) zeros in tree approximation,
The null zone condition could just as well be defined as the condition under
which there is complete destructive interference of the classical radiation
patterns of the incoming and outgoing charged lines (the infrared limit),

In the nonrelativistic limit, this corresponds to the well-known absence of
electric dipole radiation for collisions involving particles with the same
charge-to-mass ratio. The universal photon currents listed in Table I are
the counterparts of the classical BMT equations for g=2, according to the
discussion in Sec. IX,

We have stressed the unique properties of radiation zeros, most notably
the remarkable feature of spin independence, that distinguishes them from
other amplitude zeros. The lowest-order differential cross sections for
the various spin states in several reacticns which include (1.11), ud -~ Wy,
have been examined recentlyS3 for additional zeros. Besides the radiation
zero, other zerocs are also found but which depend on the polarization. Only
the radiation zero is present in every helicity channel.

On the other hand, radiation zeros are generally destroyed by closed-
loop (higher-order) corrections. The existence of these short-range quantum
corrections can be anticipated from the uncertainty principle. Une cannot
expect exact amplitude zeros for subregions of angles and energies except
in the violation of a conservation law. The special class of closed loops,
where there are no correlations and no g=2 corrections, is an exception.

Thus, we can include certain neutral closed loops defined in Sec. VIII.
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We can also include scalar self-energies in the source graph since the radia-
tion decomposition identity is correct to all orders for scalar particles

p,p' » (See Sec. V.) Indeed, in a recent study of scalar particies in the

null zone54 it is shown that first-order scalar bubbles preserve the radia-
tion zero while a triangle source graph does not. In the context of our
discussion, the former example introduces neither a correlation ncr an
anomalous moment, while the latter generates a correlation.

We have formulated a null zone low-energy theorem which is based on
the fact that the radiation interference theorem can be applied to the lead-
ing terms of any expansion in photon momentum q . The infrared term, which
is O(qnl) and is analyzed in Sec. III, is guaranteed to vanish in the null
zone for arbitrary amplitudes including clgsed loops and non-gauge—theoretic
interactions. The O(qo) term alsc vanishes in the null zone provided that
the external particles have g=2. Therefore, all low-energy theorems
automatically separate out those (leading) terms that have radiation zeros.
We have also presented a useful formalism for combining the study of low-

energy theorems and the null zone by means of a generalized radiation vertex

expansion for the effective tree structure of an arbitrary source graph.

B. Remarks

It is well-known that gauge theory couplings can be derived by imposing
a unitarity constraint on the high-energy limit of tree arnplitudes.55 Since
electromagnetic minimal couplings can also be inferred by the requirement
that the radiation interference theorem hold, we scem to be building a
bridge from the classical infrared limit to high energy behavior. We note
alsoc that the DHG sum rule for anomalous moments implies that we should

have the gyromagnetic moment g=2 for all spins at the tree level
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(classical limit), given a high-energy condition on the spin-flip Compton
amplitude. The same conclusion follows for the existence of null radiation
ZOnes.

Furthermore, it has been suggested to us that the radiation interference
theorem could possibly be stated directly in terms of renormalizability:56
"The necessary and sufficient condition for a tree amplitude with one or more
external massless gauge particles to have a zero independent of spin is that
the model be renormalizable, where the rencrmalizability may be disguised
by a Higgs mechanism or by heavy particles whose exchange looks like a point
interaction (tree segments of zero length)."” 1In this sense, the class of
gauge-theoretic interactions, defined in Sec. II, may be called quasi-

renormalizable,

The most striking experimental implication of the radiation zeros
involves the original reaction, qgq - Wy in (1.11), which should be measur-
able57 in future pp - WyX experiments at CERN and Fermilab. Although the
actual external legs are integrally charged hadrons with ancmalous moments,
the high transverse momentum photon, recoiling against the W, couples in
leading twist only to the hard-scattering subprocess; diagrams involving
radiation from spectators, etc.,, are suppressed by powers of mZ/Mé where
m is the hadronic mass scale. In addition, there are quantum corrections
from QCD loop diagrams that are of order aS(Mé)/W by the standard
renormalization group analysis and there is transverse momentum smearing
from the hadronic wave functions and the gluon radiative corrections. To
this accuracy, gauge theory couplings can be probed. The investigation of

null zones in bremsstrahlung reactions such as hard quark scattering,
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q9qg*qqY, or in radiative decays may give a measure of heavy quark and
heavy lepton magnetic momencs.
In principle, a measure of the neutrino mass m, can be found in the

decay, A+ B+ Vv + v, since its null zone requires mU=().58 It has also

been suggested that correcticns to PCAC may be similarly studied.59 In general,

the deviations from zero in the null zone provide estimates of higher-order
corrections [which must also be 0(q) by the null zone low—energy theorem]
in any process, from the standard reactions such as e"e” + e7e”y to exotic
processes involving new particles.

The null zone condition can be applied very simply to composite particles
with arbitrary spin and with collinear constituents i (momenta P; = X.P in
terms of the composite momentum p ). This immediately applies to hadrons
involved in hard scattering QCD processes, In the region where X, = Qs
the tree-graph approximation with gauge couplings for the constituents implies
that the effective composite particle has the same Q/peq factor as its
constituents. Furthermore, the resultant effective current follows the
description in Table I, corresponding to an effective gauge coupling for
the composite. The null zone is preserved. More generally, we may use a
composite picture to understand the null zone in any radiative reaction.

Both the initial and final states can be considered to be composites with
factors Ql/pl-q and Qz/pz-q, respectively. Thus, in the null zone, we
may view the reaction as equivalent to 1 + 2 + v whose tree amplitude

vanishes for Qllplaq = Qz/pz-q , 1rrespective of the spin of the composites.

Another topic of theoretical interest is whether the radiaticon repre-
sentation (6.6), when combined with the radiation vertex expansion (5.22),
could be used to simplify cross section calculations. Recent calculations

of radiative processes in QED and QCD have shown that the lowest-order
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unpolarized differential cross sections are generally very simple and

. . . 60 e R
factorize in final form. We have verified that radiation zercos are pre-
sent in these forms and are located in a single factor. For example, the

reaction ete™ - e+e—Y has the same (unphysical} null zone as that of

ete™ ~ U+U_Y, when lepton masses are neglected. Indeed, we find a common
factor in the two expressicns for the differential cross sections of the two
reactions, in which the radiation zeros reside. The symmetries inherent in
the concept of radiation zeros can be instrumental in understanding the
simplicity of the cross section forms cbtained.

Finally, it is important to determine the extent to which currents in
theories of higher spins such as supersymmetry play an analogous role.
Do they also generate transformations in both internal and external spaces
in the manner of the massless vector gauge boson currents? Will they also

lead to equations which relate variables in both spaces like

Qi/pi-q = ijpj-q ?
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APPENDIX : PHYSICAL NULL ZONE

This appendix is addressed to the question of where the null radiation
zone lies in phase space and, in particular, some details behind the equations
of Sec. IV. We also describe an approach to many-particle null zones,
including the theorem and its corollary that are stated in Sec. IV.E.

1. The n = 3 decay

We begin with the boundary limits for the decay, 1+*2+3+v . The lower

(upper) limit on the range in (4.13) is derived from Py-q >0 (E2 > m2)

The range in (4.14) is obtained from

2 2
v (x-+u2) + yx(x-%uz-kuz -1)+yp x2 <0 , (Al)
3 2 3 2
which is a consequence of
2 2 2 2 - >
= = + + - J e ™ .
q"=0=m  +m,+m} Zml(E24-E3)4-2(E2E3 Dy’ Py) (A2)
and
- > 2 2+ 2

A physical null zone for the decay amplitude exists only if (Al) is

satisfied for y given by (4.12}):

2
Q(x+u2)+Q(x+u2+u2—l)+u2$0 R (A%)
3 2 3 2
in terms of the relative charge
Q
Q = 2 (AS)
%

[Note that a factor x2 has been divided out in obtaining (A4).]

Since x 2 0 , (A4) yields

2 2

2 2 2

9 <0 . {aB)



From (A6}, or from (4.14),

G_2Q=20Q >

- .
(A7)
2 2 2 2.2 2.2 .5 2.-1
= - - + - - - 4 | 1
Q, =11 wy Wy A= My T -duous 1T 2wl
Therefore, given some masses m, and L only those charges (A5) that lie

in the range (A7) can lead to a physical null zone, The massless limit of
(A7),
0 Q<o | (A8B)
confirms the existence of a physical null zone for all same-sign charges.
There is a broad range of physical possibilities allowed by (A7) for
ui% 0, as well., To see this, let us calculate the mass limits, for a given

0 in the domain (A8), using (A6). Imn mé-—m3 space for a given ordering,

we find
2 Q
OSUZS—Q:_—]?<]. s {AY9a)
UZ
2 1 2
<.—__.__
0 <y g o] 3 . (A9b)

The inequality (A9b) is seen to be consistent with the basic mass inequality,

m2-+n¥33 my . (Al0)

since (Q+l)ul-—U§/QS (l-—uz)2 . Inequality (Al0)} is implicit in (4,13)
and is equivalent to the positivity condition on the radicand of (A7).
The nonrelativistic limit is the upper limit of {(Al0) with wvanishing
photon energy,
Hy tly=1 , (All)
From (All) we infer that Ui takes its maximum wvalue in (A9b) and therefore

= Q+D7H, = /4 1) . so that



~99-

. Q Q
2321 (A12)

where the last equality is derived as usual through mass and charge
conservation and (4.4).

Suppose that we are given identical ratios,

Q Q
2.2, (413)
™ 3
but not necessarily in the nonrelativistic limit. (They cannot also be
equal to Ql/ml , except in that limit,) TIf (Al3) is valid then (A9)
vields
do=0 Uy £ 2 . (ALlG)
20 T3 - o+l

However, this is the same as what is implied by (Al0) and (Al13) alone.
Thus, all values of m2/m3 consistent with (Al3) and (AlQ0) produce a null
zone. We reiterate that (Al3) does not imply (Al2}, but only that all
Qi/pi-q can be equal. This is generalized by a theorem in Sec. IV.E .

2, The n = 3 scattering

We proceed te the two-body scattering, 1+2+3+vy , discussed in Sec. IV.C.

In terms of the initial c.m. speeds, vy and Vo (4.17) may be rewritten
coss = (Q2/vl-Ql/v2)/Q3 . (Al15)
Confining (Al5) to the physical regdion,

-12 ¢cpsP <1 , (A16)

0z -= , (AL7)
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we obtain

v;l—l v£l+l
g} £Q<—03 , (A18)
+1 v, -1
Y1 1
for ziven V.o On the other hand, we have
-1
1l < vios® (Al9a)
-1 -1 -1
max [1, Q(vl -1)-1] ¢ v, = Q(v1 +1y+1 (A19b)
for a given 0 . 1In the equal-mass case, (Al9) reduces to
—]Q_—]'[SV <1 ,
Q+1
(A20)
vy SV, BV . ~
We may check several limits of the above equations. First, the
overall limit on Q governed by (Al8) is
0 Q<™ s (A21)
in agreement with (4.7}, The ultrarelativistic limit, V.= 1, gives the

extremes in (A21) and so all charges of the same sign will produce a physical

null zone (single points in cosB). The nonrelativistic limit, v, +0,

of (A18) yields

Q= — (A22)

_t o £ {A23)
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as we expected. (Note that the third particle is not required to be
nonrelativistic and thus Q3/m3 is not necessarily equal to the ratios in (A23);
but Q3/p3'q is equal to the ratios in (4.16).] In lowest order, (4.17) places no
restriction on cos® , consistent with the total destructive interference of
dipole radiation in the nonrelativistic limit, whereas (Al5) and (A22)
give the first-order correction to the null zone condition, which is
satisfied by cosb = 0 |

4 physical null zone is guaranteed for all energies by (A23), since this

condition combines with (Al5) to yield

cosf = ———%—‘- ( -—l] . (A24)

It follows from the c.m. relation Ym v , and inequalities

1~ 2™

=L
such as Yl(l-vl) < Yz(l-kvz) , that |cos8] <1, where Y = (1-—v§) <.

3. An n = 4 example
The charges and masses are taken to be the same, as in electron scat-
tering, (4.6). This leads to a photon c.m. direction perpendicular to the
beams (Fig. 2},
9 = 7/f2 . (A25)

The other null zone equation (4.19) reduces to y=x or
E,=E = E . (A26)
Momentum conservation obviously demands that

83= 84 e , (A27)

and the photon energy is given by

w=F - 2BE' = - 2 E'y'cosd! R (A28)
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where v1=‘v255v' . It is noteworthy that the third null zone equation

also leads to (A28). This is expected since the three equations, P1°9=P,,

Py*d=P,*d, and p .q= P44, are related by four-momentum conservatiocn.

4. Null zone theorems
Let us first prove the physical null zone theorem of Sec.IV.E for the

decay, 1 *n-1+v , in the rest frame of the parent particle, mass m

L
The n -2 null zone equations mav be chosen to be
Q, 2,
= —= , i=3,...,n-1 (A29)
Pi‘q Pr*q
with Ql/pl-q the dependent factor, necessarily identical to the rest
by (A29).
Dividing out the photon energy, we may rewrite (A29) as
il L _ 2 L (430)
m, Yi(l-vicosﬁi) ™y Yz(l-—vzcosez)

in terms of particle speeds ] and angles Gi (relative to the photon). In this
instance, we are given that all Qi/mi are equal for 122, Therefore, if
the particles travel together, opposite to the photon (Bi =T, V=V, all i),
{A30) is satisfied. This corresponds to the maximum energy for the photon and
resembles the two-body decay, ml-*M-PY » Where M = nil nﬁ_Snj . Generally,
(A30) is satisfied by some neighborhood phase space, aszwell, but we have
already proven that the physical null zone is not empty, without resorting
to zero photon energy.

Our next consideration is the reaction 1+2 > n-2+v in the c.m.
frame. One null zone equation is taken as Ql/pl-q = Qz/pz-q , which can

always be satisfied, for Ql/m1 = QZ/rn2 , at some physical photon angle
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{ef. (A24)]. The remaining n-3 equations can be satisfied, as in decay,
in the configuration where the n -2 final particles travel together
opposite to the {fixed) photon direction.

Finally, when we have k particles in the initial state, they can be
arbitrarily separated into two bunches with equal and oppesite 3-momenta
(c.m. frame), choosing the initial phase space region where each particle in
a given bunch has the same velocity (same rest frame). These two composites
have the same Q/m ratio by virtue of the identity (4.2). Thus k-2
equations are satisfied within the bunches, arguing as in the decay case,
and another equation is satisfied for some photon angle, as in (A24). The
final particles may be again clumped together opposite to the photon, satisfying
another n-k-1 null zone equations, fogua total of n-2. The
case where the photon is in the initial state is simply the reverse of this
where, as before, the identity of the initial and final state Q/p-*q
factors is guaranteed by charge and momentum conservation (the redundant
null zone equation}.

The physical null zone theorem for massless charges, given in
Sec. IV.E, has a similar proof. (For this reason, we can consider it to be
a corellary to the previous theorem.) In the general decay,
l+n-~1+vY, a physical null zone exists for the configuration
where all the final state particles are massless, and travel together (vi= 1)

opposite to the photon. Eq. (A29) now reduces to

= (A31)
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and it is only necessary that the energy ml/2 be divided up according to
the fraction of the total charge Ql that each particle carries. For
more general initial states, Eq. (4.18) applies to two initial particles
and, by construction, to the bunched initial states for k > 2.

In a null zone, neutral particles must be massless and travel along
with the photon (cf. Sec. VII). As such, they are easily incorporated into
the physical null zone theorem and its corollary. Arbitrary numbers of them
can be considered together with the photon, as a composite parallel system,
and the composite energy may be partitioned in any way. [It is intriguing
that all known neutral structureless {elementary) particles have mass

measurements consistent with zero.]
5. General equations and remarks B

To prove the physical null zone theorem, we have only needed to show
that a physical point exists where the null zone condition is satisfied.
We have not needed to find all such points. The determination of the
complete extent of the physical null zone is increasingly complicated,
particularly for more general mass and charge values, as evidenced by the
earlier n=3 decay analysis. Nevertheless,we can outline below an
analytical approach that may be useful in the determination of physical null
zones for more particles (larger n).

The n -2 constraints (4.1) are to be superimposed on phase space. For
general decay, l-n-1+47y, the 3n-7 final state variables imply a null zone
with 2n -5 dimensions. For two-body collisions, 1+2-+n-2+7v, the 3n-8

variables imply a null zone with 2n -6 dimensions. (n=3 corresponds to a

single point.) A given k-particle initial state, with no symmetry axis,

corresponds to 3{n-k) -1 final variables and 2n - 3k+1 null zone

dimensions.
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We now discuss an inductive analysis where we build larger-n null zones
from smaller-n results by svstematically replacing a particle by a composite
of particles. For definiteness, consider the replacement of particle 3, in
the n=3 decay, by a composite of n-2 particles. Denoting composite

variables by the subscript ¢,

c i
(A32)
2
PC=LP1=Pl_p2"q )
3
we may replace one of the n-2 null zone equations by
Q Q
S (A33)
PC q P2 q .
via (4.2). Equations (4.9-14) and (Al-7) can be adapted to the
case at hand by the change 3 -+ ¢ in the subscripts where
2 _ 2 _ 272
P. = M. = myH_ (A34)
The lower (upper)} limit of pi corresponding to the constituents

traveling together (particle 2 at rest with zero photon energy),

&y 2 2 2
(é mi) Sp. S (ml-mz) . (A35)

but for a fixed x and y these limits are changed. The limits on
X,y, and Q = QZ/QC are found by the substitution 3 +c¢ 1in Egs. {4.13),
(4.14), and (A7) with the understanding that pi is evaluated at its
minimum in (A35). The original discussion can be repeated here, but it

must be kept in mind that the other null zone equations are not vet satisfied.



~-106-

We may regard ¢ as a two-body system made up of particle 3 and another

composite d with momentum Pg and charge Q- To (A33) we add
Q Q
d 3
Q= . (A36)

This procedure can be continued, peeling away constituents from the
composite and adding the null zone restrictions. At the second stage of

telescoping we are led to define variables analogous to (4.10),

2 2
. 1
o Zpd ] 2E3 m3 pd
x' = 5 =1 - + > T o ,
AT A A A
2 2 (Aa37)
2p .. 2E’

0 L TR N
A -
4 A i) A
>

where the prime refers to the frame, Py -P, T 0 , and where

2

a? = (py-pPy)~ = (Ei~E') .

2
Let us regard ps as fixed for the moment. We can show that x,y, x',vy',
- -
and €', the angle between Ps and Py in the primed frame, represent

five independent variables in terms of which all of the dot products among

P1-PysPysPys and q can be expressed. [For example Az = mix/(x'+-y')

and pi = mi x (L-x"-y")/(x"+y").] The point is that (A36) is easily
implemented,
Q3
y' = — x' . (A38)
Y

The next stage is to regard d as made up of particle 4 and ancother
composite e, and so on. There remains the task of determining the nested
sequence of 1imits on the independent wvariables.

An alternative procedure for smaller n or for the selection of points

in the null zone, if not the whele null zone, is to rewrite the conditions
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(4.1) in c.m. coordinates:

Qi
Ei(l-vicosai) = 75—E , {A39)

For fractional energy [cf. (4.10)] and fractional charge,

e, = 2E./E (A40)

111

Q./Q , (A41}

4 i

the relativistic version of (A39) is
e sin®(8./2) = (AL1)
i i 94 '

We observe, from either (A39) or (A4l1), that smaller charges must have
less energy and/or get closer to the photon. It is essentially these
equations and their implications that weré used im the proof of the null
zone theorem.

Finally we note that the form of the massless result (4.18) for
L+2~+3+y suggests a geometrical construction where the direction of
the photon at the zero can be determined and where a simple picture
emerges for the zeros in reactions (1.11} and (1.13}. In (4.18) let the
direction of the final particle 3 lie along the hypotenuse of a right
triangle with one of the sides directed along particle 2. The lengths of
the hypotenuse and this side are given (weighted) by the (algebraic)
charges moving in the defined directions, Q3 and Qz-—Ql , respectively.
The other side has length twice the geometric mean, 2/6165 , of the

initial charges. Thus the angle between particles 2 and 3 is 8 , (4.18).
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relation of the denominator p.q to retarded time (see Sec. IX), to

~

-
Doppler shifts, or to light-cone variables. In a frame where q = wz ,

the light-cone coordinates for the photon are q+ = qo + qz = 2w and
- 0 zZ , . 2
q =q -q =10 . For particles with mass, we can use x and k,

such that p+ = X q+ and p = (m2 + kf)/p+ . Therefore, Q/p.q=
W(mf/x)
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condition in (4.7) and the conditions for neutral particles discussed
in Sec. VII, strongly limit theoccurrence of radiation zeros.
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determine €-:0' in terms of the appropriate full propagators 5 . In
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-1 w2

where T8 = '+ )P 2™ A D™ - 465D and (! ~p)Ty = 0.

A
However, E-FB%O , although E—FA clearly satisfies a spin-indexed

version of (5.3). For this reason TK might be referred to as the

convective part of T

J.D. Bjorken and S.D, Drell, Relativistic Quantum Mechanics (McGraw-Hill,

Yew York, 1964), Ch. 2.
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Equivalently, we may speak of AFi as proportional to the first-order

change in T, , viewed as a Lorentz tensor in the spinor representation,
i P p

_ v v up _— )

As examples, AFi 0,0,muv{ ’mth Ys ,wuvapd for Iy l,Ys,Yu,Yurs,

UUT’ respectively. Even though the cuter product Tlo--FD in (5.8) is

not tied together in spin space, it must be an overall rank-zero Lorentz
-1 -1, -1 - . .

tensor S I, 55 T,5-..3 T S =TT ---1I or, in first order,

D D 1 2 D 172 D

LA T T, =0,

- i,,,°]

i 3Fi

VG is a multi-spinor-indexed matrix, (VG)uB---’ in general, with an

index for each internal leg and where each index may be regarded as an

3
internal spinor wave function. Tor example, (VG)@ = (Vp)ﬁw (o) for

& &
wo (o) = g, - In this way we may say that each wave function of the

vertex v , external or internal, is. transformed with the same mﬂv

by the photon emission associated with the corresponding vertex leg. This also

clarifies the description of V and MY(VG) as rank-zero Lorentz

G
tensors and should be compared to the case where vector particles are
included and can lead to a higher rank for these tensors.

Ref. 18, Ch. 10.

The Feynman rules are listed, for example, in Refs. 3 and 6. For
comparison, note that Q = - e < 0 for the quanta of the W field, the
W particles, in Ref. 3.

The reader is warned that, in the separation of terms in (5.37)
leading to the contact current in (5.39), the residual convection cur-
rent has the coefficient p.r and not {p*q)-r . The momentum shift is
included in (5.39).

They also arise for couplings with higher-derivatives, irrespective

of spin.
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b

No bi-difference sum in (a_. -a_ )(b, -b ) exists for both Ea. =7 b, =0
i 3 i k P E i
since it is now Iimpossible to have either identical a;, or identical bi

However, bi-difference forms can be constructed via a multiplier Ki’ 8.2,

i
The bi-difference expansion in Lemma 2 can be obtained in this way noting

such that )(a, -a,)X, = 0 . Then by Lemma 1, s = }(a, -a_)A (b./X, —=b /A ).
o § i° 1 ;1 j>ii i ¥k

that identical Ai/Ci, identical BifCi, and Eq. (6.3) can all coexist.

We borrow notation from Ref. 5 in developing what is essentially a
generalization of their factorization formula.

A naive generalization of (6.5b) would be

£
Sam/c, = o 1C.C(a/C -A/C)B/C ~B/C) for 1%k,
j iid k 1<3 i 774 1 373 i d i" i

but has (£-1)(£-2)/2 terms. The minimal form is (6.4).

n

v
The linear relationship is | &ij(q or SJ)Sip_-q =0.
: i
1
A neutral particle is one with no photon couplings. Particles with zero

charge but nonzero magnetic moments are non-gauge-theoretic and never
satisfy the conditions of the interference theorem.

We are guaranteed the presence of an amplitude zero if the null zone
condition is satisfied first and then the Qr - 0 1limit is taken. We are
concerned in this section with the reverse order, Qr = 0, ab initio,

the physically relevant case.

Of course, it may be that (7.5) conflicts with the limits on the physical
region. The general physical null zone discussion in the Appendix is
easily adapted to incorporate a massless neutral particle. (A neutral
particle with mass can be included to the extent that it is very
relativistic and its mass is negligible.} The constraints on the Qi/mi
ratios in the physical null zone theorem need only apply to the

remaining charged particles.
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A closed-loop graph can be expanded in external momenta, leading to an
effective derivative-coupling series. 1In this way, comclusions found
for derivative couplings (such as the need for seagulls) can be
applied to closed loops.
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) uv,

S which is in turn proportional to S

nY Furthermore, the
Ry e

Dirac transformation (5.15) is correct for finite A, according to (9.4).
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TABLE CAPTION

Table I. The rules for the construction of the radiation vertex expansion,
(5.22), for radiation amplitudes generated by any source tree
graph with gauge~theoretic couplings. The factors modify the
external or internal leg of each source vertex and are derived
in Sec. V. All propagators are included in the factors R in
(5.22). There is no momentum shift from derivative couplings
in the coefficient of the convection current since this product
is included in the contact current {see Ref. 23). 1In the Yang-
Mills vertex, however, the coefficient of the spin currents
includes the momentum shift, yielding the quadratic terms
discussed in Sec. V.E. The radiation decomposition identity
is also shown (generalized to include possible contact currents)

from which internal-leg factors are derived.
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TABLE 1
RADTATOR FACTOR POSITION
vertex leg with factor goes between
charge QO along wave function and
momentum p (or vertex in source
P + q) before graph (internal wave
emitting photon AJ%*j functions are
with momentum gq ped Kronecker 5-
and polarization functions in spin
€, seagull space)
included (if any)
o s . b
Current 3 Jconv"-Jspin Jcont
where
jconv = (first-order coefficient in ) universal displacement
of wave function = £ p-£ for outgoing (+) or incoming (-},
jSpin = (first-order coefficient in) universal Lorentz transformation
. i B i aB
of wave function = {0; + 70 Wugs T 0 W58 wuB}
for {scalar; spinor u,v ; spinor u,v ; vector n_ = g n8 n+==g n+6}
L4 ? 3 ] CC uB 3 OI- aB
Jeont = (first-order coefficient in) universal Lorent: transformation
of derivative coupling, 48 - mdB for Py = gaBpB ,
with

Decomposition Identity

waB T quEB - %1

g

D(p - )ID(p) + seagulls (if any) = D{p -q)] —g—-+-_£le D(p)

| L p*q
where
scalar Dirac anti-Dirac vector
|
-1 _ - -
propagator i(p2 - m2) i(f -m) 1 i(-p - m) 1 iPuv(p)(pz-mz) 1
D(p)

i Eq. (5.27)

)
photon vertex ~1Q(2p-q) < -i0¢ +1Q# Y 6. (P -q,q,-p)s’e
['p~q,4q,p)

| Fig.7
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FIGURE CAPTIONS

The general amplitude for photon emission in the interactions
of n particles, k >*n -k + v . b) A contribution with an
infrared divergence.

The amplitude zero in e e + e e ¥ occurs when both the
photon is at right angles to the c.m. beams and the final
electrons have equal energies. This is a two-dimensional null
zone: E',&' or 8',$' at fixed 06 = m/2

The n-vertex source graph. b) A pheoton attachment to an
external leg.

A sample tree source graph and b) 1its associated radiation
amplitude, as defined in Sec. ILI.

The radiation decomposition identity for the coupling of an
external photon to an internal particle line. A double line
represents a propagator. A dashed line is quasi-external in
that the calculation of each current on the right-hand-side is

carried out as if the dashed line were real. See Eqs. (5.3),

(5.21), and (5.31). Additional contributions to the left-hand-
side due to seagull graphs where the photon is attached to either
end are easily incorporated into the respective quasi-external
factor on the right-hand-side. See Table I.

The radiation amplitude for an n = 4 tree source graph.

The Fevnman rule for a Yang-Mills locally gauge~-invariant three-
vertex for vector fields, with four-momenta a,b,c and polarization
indices a,B3,Y . The coupling constant g would be augmented

by a matrix representation for the general internal-symmetry

gauge group. In the U(1l) case where a vector boson with charge

0 emits a photon, we have g=0Q . See Ref. 22.
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Fig. 8. An example of photom-emissiont by an incoming or outgeing particle,
with momentum p and charge ¢ , that is coupled through a derivative
BB of its own field to other particles. The seagull factor is
JQggu for pheoton polarization eH .

rig. 9. The source graph example of Sec. V.E. The vector, Dirac, and

scalar particles are denoted by V,D, and S, respectively. The

bottom vertex includes a scalar fermion current,.

Fig. 10. The amplitude for radiative decay, 1 ~ 2 + 3 + v, separated into
(a) radiation from the external legs and (b) internal radiation

including seagulls.
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