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ABSTRACT

An expression for the light-cone gauge action for the
first quantized heterotic string in the presence of
érbitrary background gauge, gravitational, and
anti-symmetric tensor field is derived. The result is a two
dimensional local field theory with N=1/2 supersymmetry.
The constraints imposed on the background fields in order to
make this theory one 1loop finite are derived. These
constraints are identical to the equations of motion for the
massless fields at the linearized level. Finally, it is
shown that if there is no background antisymmetric tensor
field, and if the gauge connection is set equal to the spin
connection, the effective action 1is that of an N=1

' supersymmetric non-linear sigma model.
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I. INTRODUCTION

Discovery of anomaly ‘cancellation1 in type I
superstring theories2 by Green and Schwarz has given us hope
that superstrings may provide us with a wunified theory of
nature. Since then two new string theories have been

discovered3’4

r one of which has S0(32) as its gauge garoup,
while the other is based on the gauge group EBXEB' Both of
these theories are expected to be anomaly free, since the
limiting field theories obtained from them in the zero slope

limit may be shown to be free from anomaly at the one loop

level. Of these the EBxE8

phenomenological prospects-s.

theory seems to have good

Since these theories are defined in ten dimensions, we
must compactify the six extra dimensions in order to get a
realistic theory of natureg. Two different approaches have
been taken to study this problem. In the first approach one
studies the compactification of the ¢ten dimensional field
theory which 1is the =zero slope 1limit of the string
theoryS_B'lo. The compactification is then achieved by
giving the wvarious massless fields [(e.q. the graviton
field, the antisymmetric tensor field and the gauge field)
associated with the massless excitations of the string,

11-12
, oOne

vacuum expectation value. In the other approach
tries to formulate and study first quantized string theory

in an arbitrary background metric, which gives us a



non-linear sigma model in 1+1 dimensions. Attempts have
also been made to formulate new kinds of sttinq theories by
adding Wess-Zumino type terms to this non-linear sigma
modellz. The requirement of being able to formulate a
consistent, reparametrization invariant string theory gives
strong constraints on the two dimensional field theory
describing the first quantized string action. In
particular, it requires that the theory should be
conformally invariant, and hence all the B-functions must
vanish to all orders in the perturbation theory. |

In a previous paper13 we studied the connection between
these two approaches by investigating the dynamics of a
string in a weak background graviton and antisymmetric
tensor field associated with massless closed string excited
states. 1In particular, we showed that the presence of a
background graviton field 1is equivalent to adding a
Wess-Zumino term to this string action. For the fermionic
strings the effective action for the fifst guantized string
reduces to the supersymmetric extension of a non-linear
sigma model with a Wess~Zumino term. A similar action for
the heterotic string was also written down in the presence
of arbitrary background gauge, . gravitational and
antisymmetric tensor field.

In this paper we further persue this approach and study
the ultraviolet behaviour of 'the two dimensional field

theory that describes the heterotic string in arbitrary



background fields. In Sec.Il we derive the action for the
heterotic string in the presence of arbitrary background
fields. Sec.ITI is devoted to the study of the one loop
ultravioclet divergences in the theory, and deriving the
requirement for finiteness of this model. 1In Sec.IV we

discuss the various implications of our results. In

i i1l A e = R
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non-linear sigma model is equivalent to the field equations
in the weak field limit. From this we conjecture that there
may be a deep connection between the condition for
finiteness of the sigma model describing the string in a
given background, and the equations of motion of the string
field theory. It is also shown that in the absence of any
background antisymmetric tensor field, the action derived in
Sec.II reduces to that of an N=1 supersymmetric non-linear
sigma model if the gauge connection is set equal to the spin
connection. This, in turn, implies that the effective sigma
model is finite to all orders in the perturbation theory if
the background 1is Ricci flat. In appendix A we show that
the effective non-linear sigma model derived in Sec.II is
invariant under an N=1/2 supersymmetry transformation.
Appendix B contains some details of the one loop calculation

performed in Sec.IXI of the text.



II. Heterotic string in arbitrary background field

In this section we shall derive an expression for the action of th
heterotic string in arbitrary weak background gauge,
gravitational and anti-symmetric tensor field. If, however,
we want the background to satisfy the classical equations of
motion, we should not only consider background fields
corresponding to the massless states of the string, but also
background fields corresponding to the massive states of the
string, since the massive fields couple to the massless
fields through three point vertices. The problem may be
avoided by taking all the background massless fields to be
small (ve). Then a consistent solution of the field
equations may be obtained where the massive fields are of
order 52 (since the masive and the massless fields couple
through cubic coupling). Due to this reason we restrict
ourselves to the case of weak background fields onlv.

We start our analysis by writing down the 1light cone

gauge action for the free heterotic string,

S = g SdrSde T2 (A xF 3" xF +335 ")

5
+ fé 3 x* x*] (1)

where a=0,1 denotes the world sheet parameters T and 0

I

respectively. X' and X' are bosonic coordinates, and t are

the fermionic coordinates. {We have chosen the



4 < s
Ramond-Neveu-Schwarz representation1 for the fermionic

coordinates). Ai’s satisfy Majorana-Weyl condition, for
definiteness we take them to be left-handed. XI's satisfy
the constraint that they are always risht moving. We choose
to work in the Majorana representation for the two

dimensional vy-matrices:

and define,

YP = P’P' = ! o) (23)
o - '

The constraints on XI and X may then be written as,

(3.-3.) X* =0 (2-9)

CYNEDY @)
(t-v, ) N =0 (2:6)

Egs. (2.5) and (2.6) tells us that At is real, and its
lower component must vanish. Hence we may treat 21’s as one
component real spinors, which we shall again denote by Al.

The action (2.)) may then be written as,



S= gk GAv [ do [ £ 10e-2) X Gerde) X*

FiXNGHINT+E Gt )X @31 X]
@7)

There are massless states of the heterotic string
belonging to the symmetric and antisymmetric tensor
representation of SO(8), giving rise to the graviton, a
massless scalar, and an antisymmetric tensor fieldz. The

vertex operator for the emission of such a state with

momentum k in the k++0 limit is given by,
' v » . »
ik 3,  do{(3e-20) XE 4R AN E (Betdr) X°
®

etk Xt (X))

where k is the gravitational coupling constant. The

polarization tensor z for the external tensor field is

ij
assumed to be transverse. It is symmeZTtric for the
graviton, and antisymmetric for the antisymmetric tensor
field. We may now use the method of [13] to derive the

effective action for the first quantized string in the

presence of a background graviton field hij(x) and

5() . If hy (k) and by, (k) gre

the Pourier transforms of these fields with respect to the
i

antisymmetric tensor field bi
transverse coordinates x*, the operator whose matrix element
between two states gives the correct transition amplitude

from one state to another, is given by,
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%Sm:fvdwfd”k $RL R AT, RIF @+ )X

$(3c-3,) x.“ + R AL O e X"

= 3#5 {dv ;fwclcr B3, )X [(op-3,) X* T hy (X Wb (X3
=2 XEXS Thg o OO +bg;  (x)3] (29)

where f,z denotes 3f/3xL for any function f. Let us define,

&i; (x) = 8,.;3 +2k ""N (x)

=
B, (x) =2k b, (X) (2-10)
Finally, note that the addition of a term,

i (dr{do Thy; O +b; )3 A @3 )N
) (2.11)

to ({2.9) does not affect the transition amplitudes from one
state of the string to another in first order in h and b,
since in the zeroth order approximation, equations of motion
for Aj gives (aT+ao)xj=o. Thus to first order in the
external ?ields, the effective string action may be obtained
by adding to (2.1) the expressions (2.9) and (2.11) without
the factor of 1. We may

then write down the full effective string action as,
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S = & Sde ("o g, 00 §3,x* 3% +13° ¢*(@A)'3
4B, (x) €A XX s, ()R e N €, P x!

+%‘ =N (3‘\ ?*AJ’ B;J' (X))] | (2'|2)

where,
@A = A"+ P:lz 3% N (2.13)
Sisn =@k By +3; Bug + e Bi)/2  (214)

Pidlg =% g* (315,h+ - ‘3‘.5&,:.) 25)

Eq. (2.12) may also be obtained directly from the expressions

derived in[i¥Y)by using the constraint (2.6). This lagrangian

15

is that of a supersymmetric non-linear sigma model with a

16-18

Wess-2Zumino term {2.12) is invariant under the N=1/2

supersymmetry transformation laws,

Sxt=dent, N =-(r-3.)x" € (216)

where ¢ is a real one component spinor. Moreover, the proof

of invariance of (2.12) wunder the above supersymmetry
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transformation does not require the use of equations of
motion. (This is related to the fact that the auxiliary
fields wvanish 1identically .when {2.6) is satisfied)., As a
result, any extra term added to (2.12) will keep the full
action supersymmetric if the extra term is supersymmetric by

itself. Eq.(2.12) also shows that Bi'

j couples to the string
al?,

as a Kalb-Ramond fiel

Let us now turn to the effect of introducing ba;kground
gauge fields. They may be divided into two classes, one
corresponding to the diagonal generators of the EBan or the
80(32) groups, and the other corresponding to the
off-diagonal generators. First we shall consider the ones
corresponding to the diagonal generators of the group.
These states are labelled by two indices i and I, where i is
the polarization index (i=1,...8), and I is the internal
index (10<I<25) labelling the 16 generators of the gauge
group. The vertex for emission of such states with momentum

k is given by,
A& T4 T@-3) X H ke X A 3 (v +3.) X*

. ™
(E.\.hn.>( !;ilf (?-F?,

Hence in the presence of a background gauge field

AiI(xi) the effective action acquires a term,

S, = i_lT_.r_(cl't;fvd.o-['A“ (x) (5r-3s) x*
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-1 Ayp, (XD XAT T- L (Gatan) XS
@.18)

absorbing a factor of (- 2x) in AiI' The reason for
choosing this particular normalization will become clear
later. It is easy to verify that (2.18) is invariant under
the supersymmetry transformation (2.16).

Finally, let us turn to the off-diagonal gauge fields.
This states are given by the direct product of the massless
states of the fermionic strings in the left handed sector
carrvying vector index i, and the ground state of the bosonic
string in the right handed sector carrying momentum pI+ki,
where ki is the physical momentum of the state, and pI.is a
vector in the root space of the gauge group, labelling a

particular off-diagonal generator of the group. The

emission vertex for such a state is preportional to

i §Tdo TGe-3e) X+ R X X3
‘(k"‘x + br X7} @19)

Hence, in the presence of a background gauge field

Ai(xl,pl), the action receives an extra term,

L) Sl de {(a@:-a,)rx*’ A O i)
“iA,,, (X5 b)) AN ARY eth (2-20)

with properly novrmalized A; (X, p).
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Here the sum over pI runs over all the roots of the group.

If we define,
. o ik X’
A, O, XT) =2 A, (X’ b) € @21)
Then (2.17) may be written as,
S5 = gk C ) SHSaT [R-a) X* ALK, X7)

. R m oA

- Aa‘.,m (x’, X ) A A @'22)
which mav again be shown to be invariant under the
supersymmetry transformation law given in (2.16). Eq.({(2.22)
may also be derived from (2.18) by applying the gauge
transformation operator constructed in Ref.20 on this
expression.

Thus, in the presence of arbitrary background

gravitational field 95 antisymmetric tensor field B.., and

j' Jl
gauge field A, and Ai(XI), the full effective action for

the first quantized heterotic string is given by the sum of
$1, Sp and 84. This action is invariant under the N=1/2
suversymmetry transformation given in (2.16).

For doing quantum calculation, however, it 1is more
convenient to replace the 16 right-moving bosonic
coordinates X' by 32 right-handed Majorana-Weyl -fermions yS
{s=1,..32). For the heterotic string with S0(32) gauge

group, the 32 fermions belong to the fundamental
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III. One loop ultraviolet divergences in the theory

In the last section we derived an expression for the
action for the heterotic string in the presence of arbitrary
background fields. Although these results are valid only in
the weak field approximation, the resulting two dimensional
field theory has an exact N=1/2 supersymmetry, and may be of
interest in its own right. With this in mind, we shall
study all the one 1loop divergences in this theory, and
derive the constraints on the background fields required by
the wvanishing of all the one loop divergences. In
interpreting this result, however, we must keep in mind the
fact that we should take these constraints seriously only to
first order in the background fields.

We use the background.fie]d method for our analysis,
which have been widely used by many authorsl7'21$11n this
method, each bosonic coordinate Xi in the action is replaced
by Xi+ﬂi, where Xi is the background field satisfying the
classical equations of motion, and rl is the quantum field.
We may then expand the action in a power series in 7, and
derive the Feynman rules for calculating graphs involving
the ni lines. In this method, the external lines are always
made of the background fields xi, whereas the internal lines
are always made of the quantum fields ﬂi. The fermion fields
ws and Ai are treated in the same way as in ordinary

perturbation expansion, and hence they appear both, in the

internal as well as the external lines of a graph.
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Although this method can be used directly to calculate
all the counterterms, we loose explicit general coordinate
invariance in this method, and hence the calculation becomes
very compliéated. This problem may be avoided by expanding
the action in terms of the normal coordinates Ei(x,ﬂ)

instead of the fields ﬂi themselves. El(x,v) is defined as

¥4 (xm) = 4x° (1)

o

where xl is defined through the equations,

2 oA A J gck
ey r'ak & F-o (=2)

ac* (0) = x* () = XA 4mt (z.3)
Physically, Ei may be interpmreted as a vector, whose
direction 1is along the tangent vector at X to the geodesic
passing through the points X and X+n, and whose 1length is
equal to the length of the geodesic between the points X and
X+m1. The fields Ei transform covariantly under a general
coordinate transformation on the manifold spanned by the

coordinates x}. Let us also define,

3% = e%; ?L’ X":e"}b)\JL (4)

where eai are the vielbein fields, satisfying,

e, €%, = §.. =-s)
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The action for the heterotic string after the
replacement of X by X+7, and using the xi equations of
motion takes a simple form when expanded in terms of the
fields Ea. The part of the action (2.28), that does not
involve the field V%, represents the standard action for a
supersymmetric non-linear sigma model with a Wess-Zumino
term, with the restriction that the spinors al are
Majorana-weyl. This theory has been studied by previous
authors, and the extra term in the action from this term,

obtained due to the replacement of xi by :'tiﬂr:'L is given by?
v o o
L Cdr do [ 3 ¥* I ¥ - B (33, 3°- %3
am o
+8 BN ENET 4 B 5 (9 xF - P xtyx!)

S 5P 4 O(E®) +t oA ¥E)) | z-¢)

ab _ ob P ¢ b R
B:® = (™, 4 -¢fer e s )9 x

@)
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representation of the group, whereas for the heterotic
string with Esxza as its gauge group, the fermions belong to
the (16,1)+(1,16) representation of the S0(16)xS0(16)
subgroup of the EaxE8 group. (In the rest of the paper we
shall assume that the background gauge fields always belong
to this S0(16)xS0(16) subgroup). The current (aT+ao)xI may

then be expressed in terms of the fermionic coordinates as,

(3, +3,) X" = L P TR Y (2.23)

where TI is a diagonal generator of the gauge group,
normalized to tr{TI)2=1. The action 52 may.then be expressed

in terms of the fermionic coordinates as,

fﬁfd"f"“ PTTe*y {4, 3 X4

s = A
- _zz 2t €, A ﬂn’l (X)% (2.24)
Since the ¥ 's transform linearly under the SO0(32) or
the SO(1l6)xS0(16) groups, the generalization of (2.24) to
the case of arbitrary background gauge field A?(x) ('1'M
denotes an arbitrary generator of the S0(32) or the
SO(16)xS0(16) group) may be obtained from (2.24) by a global
gauge transformation, and is given by,

L Sdvfde ¥ TV €y { AT (0 3 x*

-EXPeN AL, (03 (225)



14

Since xzfall is antisymmetric in i and %, we may replace

M

Ai ) by FMil/z in the weak field approximation, where,
14

e = Ay~ A tE™T AL AD e26)

Here fMNP are the structure constants of the group defined

through the relation,
T TS A (2.27)

Thus the full action of the heterotic string in the

presence of an arbitrary background field is given by,

S-= ,Lﬁjd'cfdcr[g () {3, X* Fx'+1A ?“QLA)‘}
+ B e"";x*a X3 -3S;;, (A PN e.t, >* x*
F1a (RN BLO0) + TP Y
FPE) EY LA X - LR RN G2e)

This action is invariant under the N=1/2 supersymmetry

transformation, as shown in appendix A.
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is the spin connection, and,

o - b a B

A )
.. — l-‘.- — Sgu - . h 3“0
F ok ( AR uk)"‘gm F.Ht ( )
ﬁ is the generalized curvaturel7 Kk has been defined in

. Sij
Eq. (2.14). 1In writing down (3.6), we have ignored the 0(53)
contribution, since it does not contribute to the one loop
amplitudes. Terms of order EAZ may contribute to one loop
amplitudes involving external A lines. The graphs involving
external X lines, however, are related to the graphs
involving external X lines due to the N=1/2 supersymmetrv,
and hence, we shall not consider any graph involving
external A lines in our analysis. Due to this reason we may
ignore all terms of order sz.

Next we must turn to the terms involving the wS’s,
Again, in the term involving wswtkilj we may replace X+m by
X, the extra terms being of order xzz. The analysis of the
term independent of X may be carried out in the following

21

way. It has been shown“" that in a suitable frame,

3, (X*+1*) = 3 x* +(D¥) ;

+ L RY ;e X)) TV E 40 G
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A, (X+T1) = A% (x) +(D;A) §°

++1 (®; Dy A")&"é' R AIE ER B2
where,

(o; A" = 3; AR -TL A}
(D'g) = 9, %" +w‘“’ <® a‘x

= e&,j {a‘-g + PJR,;.S de‘.} (3' '3)

and R is the usual Riemann tensor, given by the right hand
side of Eqg. (3.9) with F replaced by T.
The total action for the heterotic string, evaluated at

xen is then given by,
Tg (%) + 4 Sanfdo [ 5" 3 "
- B (EEt-st ) 4B BT
+ Rpypan (uX™ 3% X" - €8 X" X") T+ 8P
Y T E RS- o LY AL A Al DI R LIRS i
+ P ey AT (0 @,3)" +Bu A, ¥ AXS
+ peTy b T om*
+ L7 e*r"y (D A A", +R*“,. AT 3 xts st

R T ey L 0 R Al G-10)
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where IB(xi) denotes the part of the action 1involving only
the background fields xi. This part is irrelevant for any
guantum calculation.

With this effective action, we may now bproceed to
calculate all the one loop counterterms involving the
external U5 and x! fields. During this calculation we

i'

a __ PR
and A *'s as

always have the X' ’s as external 1lines, §
internal lines, and the V875 as both, internal and external
lines. The details of the Feynman rules, and the
calculation of various graphs have been presented in
appendix B, After using the equations of motion for the x1

and the ws fields, the ultraviolet divergent part of the one

loop effective action may be shown to be proportional to

2 B I 3 . J
zf'(%‘:r%‘ @rie 3R, . (X" F-€P3 %43 x7)
- VetV T - 3, x* s**, F

+((D°- F™) o+ A FL ) 3 %t 3] (3.15)

Hence the finiteness of the model to one loop order gives

the following constraints on the background fields,

=0 (z-16)

Vo d

R

Aaoy’

(ﬁo. FM)M - s* Ru =0 ©-17)
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where D denotes the full covariant derivative, including the
gauge, as well as the spin connection., Also, note that Eq. (3.17)
may be written as (DaFM)az=0’ where D is the generalized

covariant derivativel7, including torsion on the manifold.
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IV. Discussion

In this paper, we have derived an expression for the
heterotic string in the presence of arbitrary weak
background gauge, gravitational and antisymmefric tensor
field. The result is a two dimensional local field theory
with N=1/2 supersymmetry. A consistent formulation of the
string theory requires that the two dimensional field
theory, representing the first quantized string action must
be conformally invariant, and have vanishing B-function.
Although it is possible that the theory may have zero
B-function at some non-zero value of the coupling which will
not show up in the perturbation theory, we have assumed that
the B-function must vanish order by order in the
perturbation theory. This, in turn, implies that the theory
must be finite order by order in the perturbation theory,
except for wave-function rencormalizations. This requirement
gives strong restrictions on the background fields. 1In this
paper we have studied the possible ultra-violet divergences
in the two dimensional theory at one loop order, and have
obtained constraints on the background fields by demanding
that all such ultraviolet divergences must vanish. These
constraints have been summarized in Egs. (3.16)-(3.17).

Although these conditions have been written down in a
nice covariant form, they should be taken seriously only to

order linear in the backg;ound fields, since the original
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action was derived by ignoring all terms containing more
than one power of the external fields. To this order,

the symmetric and the
antisymmetric parts of Eq.(3.16) are equivalent to the

egquations,

R =0 (1)

Aae)
¥ S;;p=0 (4-2)

whereas Eq. (3.17) gives,

3, F' =0 +-3)
Ad

Note, however, that these equations are precisely the
equations of motion of the graviton, anti-symmetric tensor
and gauge fields respectively to first order in these
fields. This leads us to believe that there is a deep
connection between the condition for finiteness of the two
dimensional field theory describing the action for a string
in a given background, and the full equations of motion
involving the background fields.

Finally, we shall analyze the action (2.28) in the
special case where bij=0' and the gauge field is equal to
the spin connection. Most of the attempts to compactify

6,8

string theories have been based on such manifolds In
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this case, the holonomy group of the underlying manifold,
which is a subgroup of SO(6) is identical to the subgroup of
EBer or SO(32) in which the gauge field takes its wvalue.
Components of the field ¥ which are singlets of this group
decouple from the theory as a set of free fields.
Similarly, components of X, which are singlets of the
holonomy group, decouple from the theorv. Components of X
which are not singlets of the holonomy group, on the other
hand, transform in the same way as the components of ¢ which
couple to the background gauge field. Hence there is a one
to one correspondance between the ws's and the ki's, and we
may combine the fields ¥ and X to get a Majorana spinor ¥
with both, right and left handed components, Since the
gauge field strength F is equal to the curvature tensor R in

this case, we may write the full action as,
™ .
= _) A 3%y
. = x ] t L J
+13%, e%(, 5 +r xf)x

# LR X)) RG] (4y)

which is the action for an N=1 supersymmetric sigma model
with background metric 9j5- This guarantees that the model
is finite to all orders in the perturbation theory if the

background metric is Ricci flat21.
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Appendix A

In this appendix we shall show that the full effective
action for the heterotic string in arbitrary background
field, as given in Eqg. (2.28) has an exact N=1/2

supersymmetry. For this purpose, we shall express the

M

action explicitly in terms of gij’ B, and A, as follows:

3

s=Li Sdv§do £ )

£ =1 [ g, 00 03X (Berdr) X

+13,; XBerde)N =18, , Brr3) X XX

+ By 00 (9¢-3,) X Bt 3.) X° 41 B;; (%) NCEERPY
=1 By e Get )X N AT Y B0 ¥
FPSE, WAL (e )X - 1A XN

-3 §"™" A A} At A% %] (r.2)

where we have used the one component notation for the spinor
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fields 21 ana %, Under supersymmetry transformation with

one component spinor e, the various fields transform as,
Y A
SA* == (-3, ) X" €
. . :\
Sx* = 7€A

o (A.3)

Syt

Thus,

S$(x) =5, i€’ GX)

where f is any function of X. Using Eqgqs. (A.2)-(A.4), we

get,

- Get+3. ) N3 +4 1€ yotr ), ¥*

C(e-2. )87 AN - 357 AL X FA7, A"
+2 A (3~ )X'E] (a-s)

Contribution to &S from the first term in (A.5)
vanishes excebt for the boundary terms2 . Contribution from

the second term may be written as, after doing an

integration by parts,

§s= 1€ _(m;(’io- [- (o -3.) (y* o WAL X
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N § A }
+A; Gr-3)X" 3 ] (R-6)
From Eg.(A.2) we may write the V field equations of motion

as,

i G2V + T wt T AT (r-2,) X

~T A7, XA - STTAY AL X XY ()
whicn gives, ‘

(Ge-3) (y* T v)

= v, ¢F 1 { AL (B Xt

- n:)!. )‘z )\L“ _-t fLNP A':L H; 2 (A 8)

Substituting this in (4.6), and using the relation,

[, ™ =-18"""T° @-9)

we get,
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m ¢
§s =-£ Sdrfdo L

fMLK fLNP A: R: A? AJAIA& (Alo)

Using the antisymmetry property of the product of Arg, we

LN

may replace fMLK f P by,

T ¥ AT SRET S S S S SN 3D

which vanishes by Jacobi identity. This shows that S is
indeed invariant under the supersymmetry transformation

(A.3).
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Appendix B

In this appendix we shall give some details of the
Feynman rules, and evaluation of wvarious one loop
ultraviolet divergent graphs in the effective two
dimensional field theory. The relevant action is given by
Eq. (3.14). Absorbing an overall factor of (1/%) in the loop
counting parameter, we may write down the propagator for

various fields as,

A =_i_ 8 :
s (P) crerli® (81)

S, (b) = .'.%'.!' i S&b ®-2)

Sy (b) = _'.:z_"fr ¥ S, (B.3)

The various propagators are diagrammatically
represented as in Fig.l. The various vertices of the theory
that are relevant for one Jloop calculation are shown in

Fig.2. They are given by, respectively,



30

@ 4§ B (ap-R) i BT

+z"|‘<"

m bon

(3, X" X™- € 3 xS “)3+(cu—»b)
bes R-b
. bo. p¥%
) : -2 8¢
@: i Al 3, x* % Y

L § (B, A"), % X"+ AL WM 3 X"

N|~

+ iRy Ay 3TN
e : _‘;;_e“ [O, A, iRg + @A) wFpax!
+4 @D, A", + R, AT3 B«X‘l + (:.e Ry
$): FFO T 6N® 6 (8.4)

In Fig. 2, the double llnes always represent some function of
the background fields, which are stated explicitly in
Eqg. (B.4). Notice that in writing down the Feynman rules,
all the gquantum fields have been represented in the momentum
space, while all the background fields are still represented

in the position space. If the effective one 1loop action
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calculated with these Feynman rules has any dependence on
the momenta K, carried by the background fields, we must
replace it by i3, if the momentum is incoming, and by (-iaa)
if it is outgoing. Finally, note that in calculating the
combinatoric factor associated with a given graph, we must
take into account the fact that the fields A and ¥ are
Majorana, so that any of the two lines coming out of a
vertex quadratic in ¥ (or A) may be contracted with a given
external ¥ (or A) field.

In order to study the ultraviolet divergence structure
of the theory, we must 1list all possible operators of
dimension two. As mentioned in the text, we shall consider
only those operators which do not carry any A field, since
operators with » fields are related to those without by
super symmetry transformation. There are four such possible

operators given by,
S;; (x) 3, x* 3% X’ (8.5)
T x) €F 3 %%y % @®-¢€)
Q" (x) P The*y o, x* (8.7)
P™ (X) PRy €, 3P (8-2)

Moveover, (B.7) and (B.8) are wot independent since y As Weyl.
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Mere S, T, P and Q are arbitrary functions of the fields
xi. Graphs contributing to (B.5) and (B.6) have been shown
in Fig.3(a)-(d), while those céntributing to (B.7) and (B.8)
are shown in Figs.3(e)-3(i). |
The evaluation of most of these graphs is
straightforward. The c¢ontribution from Figs.3(c), {(4) and
(i) may be shown to be ultraviolet finite. The total
contribution to the effective action from Figs.3(a) and (b)
is proportional to,
€A

R 1 1R (3, x™a%x"
114

ci—iiL i;::;ié 2, mooan
- et 5, x" e X") (&.9)

Total contribution to the effective action from

Figs.3(e) and (f) is given by, after doing an integration by l:aavts
and using the equations of wmotion (A.7) for the vy Sield,

: a2k v ™ L
(1S(21ﬂ‘ w'ne) ¥ ey
[-4 €, °x* 5% @A), + 1D T@AY),

@0 A7) 33Xt -4 57 AL @R, X o)
®-10)
where we have used Eq. (3.7) to express Baba in terms of the

spin connection and the torsion, Contribution from Fig.3(h)

and Fig.3(j) are given by, respectively,
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ab A pMNP P
-((,_,ﬂa lz:m.e é‘*'T){“ LU XTFTALA,

Al Ay, AT 3 X" (8.12)

Evaluation of the graph shown in Pig.3(g) is somewhat
more tricky. A direct calculation of the graph gives a
contribtion of the form a+bg, where a and b are functions of
the background fields. Since p is the total incoming
momentum carried by the fermion field ¥ and the background
fields attached to the left vertex of the graph, in writing
down the effective action, we may replace P by i¥, where the
Ba operator acts both, on the incoming fermion, as well as

the background field. The contribution to the effective

action from Fig.3(g) may then be written as,

)
( I(ZTT)"I! R3+ i€
cigmre ety { AL (D, n")a Xt 4+ AL wbs 3,

L[ PrTreTAL 13 (AL )
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—AN (D, Ao Xt AT @ 3 x il
(8.13)

This may be simplified by using the equations of motion for

the ¥ fields given in Eg.{A.7). The final result is,

Nl LA p £ AL

3, A% 3 X" +2 7§ 5TV TN T Y AT Ay 2 X"AL

+5""TP TPy £ AL (oA, 2 X
N L
+ A% W% 3 XD - A% (Do A%, 3uX

+ A wh, 3, xM 1 (8. 1)

Aadding (B.9), (B.10), (B.1ll1), (B.12) and (B.l4), we may
reproduce Eq. (3.15) of the text.
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FIGURE CAPTINS

Fig. 1. Propagators for various fields
Fig. 2. Various vertices relevant for calculating one loop counterterms

Fig. 3. One loop ultraviolet divergent contributionsto the effective

action involving external X" amd ys lines.
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