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ABSTRACT 

An expression for the light-cone gauge action for the 

first quantized heterotic string in the presence of. 

arbitrary background gauge, gravitational, and 

anti-symmetric tensor field is derived. The result is a two 

dimensional local field theory with N=1/2 supersymmetry. 

The constraints imposed on the background fields in order to 

make this theory one loop finite are derived. These 

constraints are identical to the equations of motion for the 

massless fields at the linearized level. Finally, it is 

shown that if there is no background antisyuanetric tensor 

field, and if the gauge connection is set equal to the spin 

connection, the effective action is that of an N=l 

supersymmetric non-linear sigma model. 
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I. INTRODUCTION 

Discovery of anomaly 'cancellation 1 in type I 

superstring theories2 by Green and Schwars has qiven us hope 

that superstrings may provide us with a unified theory of 

nature. Since then two new string theories have been 

discovered3*4r one of which has SO(32) as its gauge group, 

while the other is based on the gauge qroup E8xE8. Both of 

these theories are expected to be anomaly free, since the 

limiting field theories obtained from them in the zero slope 

limit may be shown to be free from anomaly at the one loop 

level. Of these the E8XE8 theory seems to have good 

phenomenological prospect 5-8 . 

Since these theories are defined in ten dimensions, we 

must compactify the six extra dimensions in order to get a 
9 realistic theory of nature . Two different approaches have 

been taken to study this problem. In the first approach one 

studies the compactification of the ten dimensional field 

theory which is the zero slope limit of the string 

theory S-8,10 . The compactification is then achieved by 

giving the various massless fields (e.g. the graviton 

field, the antisymmetric tensor field and the gauge field) 

associated with the massless excitations of the string, 

vacuum expectation value. In the other approach 11-12 
, one 

tries to formulate and study first quantized string theory 

in an arbitrary background metric, which gives us a 
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non-linear sigma model in l+l dimensions. Attempts have 

also been made to formulate new kinds of string theories by 

adding Wess-Zumino type terms to this non-linear sigma 

model12. The requirement of being able to tormulate a 

consistent, reparametrization invariant string theory gives 

strong constraints on the two dimensional field theory 

describing the first quantized string action. In 

particular, it requires that the theory should be 

conformally invariant, and hence all the R-functions must 

vanish to all orders in the perturbation theory. 

In a previous paper 13 we studied the connection between 

these two approaches by investigating the dynamics of a 

string in a weak background graviton and antisymmetric 

tensor field associated with massless closed string excited 

states. In particular, we showed that the presence of a 

background graviton field is equivalent to adding a 

Wess-Zumino term to this string action. For the fermionic 

strings the effective action for the first quantized string 

reduces to the supersymmetric extension of a non-linear 

sigma model with a Wess-Zumino term. A similar action for 

the heterotic string was also written down in the presence 

of arbitrary background gauge, ..gravitational and 

antisymmetric tensor field. 

In this paper we further persue this approach and study 

the ultraviolet behaviour of the two dimensional field 

theory that describes the heterotic string in arbitrary 



background fields. In Sec.11 we derive the action for the 

heterotic string in the presence of arbitrary background 

fields. Sec.111 is devoted to the study of the one loop 

ultraviolet divergences in the theory, and deriving the 

requirement for finiteness of this model. In Sec.IV we 

discuss the various implications of our results. In 

particular, we show that the criterion for finiteness of the 

non-linear sigma model is equivalent to the field equations 

in the weak field limit. From this we conjecture that there 

may be a deep connection between the condition for 

finiteness of the sigma model describing the string in a 

given background, and the equations of motion of the string 

field theory. It is also shown that in the absence of any 

background antisymmetric tensor field, the action derived in 

Sec.11 reduces to that of an N=l supersymmetric non-linear 

sigma model if the gauge connection is set equal to the spin 

connection. This, in turn, implies that the effective sigma 

model is finite to all orders in the perturbation theory if 

the background is Ricci flat., In appendix A we show that 

the effective non-linear sigma model derived in Sec.11 is 

invariant under an N=1/2 supersymmetry transformation. 

Appendix B contains some details of the one loop calculation 

performed in Sec.III of the text. 
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II. Heterotic string in arbitrary background field 

In this section we shall derive an expression for the b&ion of th 

heterotic string in arbitrary weak background gauge, 

gravitational and anti-symmetric tensor field. If, however, 

we want the background to satisfy the classical equations of 

motion, we should not only consider background fields 

corresponding to the massless states of the string, but also 

background fields corresponding to the massive states of the 

string, since the massive fields couple to the massless 

fields through three point vertices. The problem may be 

avoided by taking all the background massless fields to be 

small (SC). Then a consistent solution of the field 

equations may be obtained where the massive fields are of 

order E ’ (since the masive and the massless fields couple 

through cubic coupling). Due to this reason we restrict 

ourselves to the case of weak background fields onlv. 

We start our analysis by writing down the light cone 

gauge action for the free heterotic string, 

S E~5dr~=~~C~(a,xiaqx”+iX’e’~~~) 
0 i-1 

+ *f. 8( x1 aax’ 
where a=O,l denotes the world sheet parameters r and a 

respectively. X1 and X1 are bosonic coordinates, and f are 

the fermionic coordinates. We have chosen the 
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Ramond-Neveu-Schwarz representation14 for the fermionic 

coordinates). Xl's satisfy Majorana-Weyl condition, for 

definiteness we take them to be left-handed. X1's satisfy 

the constraint that they are always right moving. We choose 

to work in the Majorana representation for the two 

dimensional y-matrices: 

po= 0 -i 

( ) i 0 

p=o i 
c 1 i 0 

and define, 

YP 
=QO,', 

(2-4 

(f-3 1 

The constraints on X1 and AL may then be written as, 

(&-a,) x’ =o 

(l-u, ) Ai -0 

Eqs. (2.5) and (2.6) tells us that Xi ' 1s real, and its 

lower component must vanish. Hence we may treat Xl's as one 

component real spinors, which we shall again denote by Al. 

The action(2.1) may then be written as, 
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s * & pTJ=d~ c g, C($dr) xi @et&) XL 
0 

+i &a,+a,)A’j +*~,,&+x’ &a,) x’l 
(2*7) 

There are massless states of the heterotic string 

belonging to the symmetric and antisymmetric tensor 

representation of SO(S), giving rise to the graviton, a 

massless scalar, and an antisymmetric tensor field2. The 

vertex operator for the emission of such a state with 

momentum k in the k++O limit is given by, 

q S&) & f&-a,) XL t l?JW3 QJr+ac) x4 
0 

where K iS the qravitational coupling constant. The 

polarization tensor 5 ij for the external tensor field is 

assumed to be transverse. It is symmeztr ic for the 

graviton, and antisymmetric for the antisymmetric tensor 

field. We may now use the method of 1137 to derive the 

effective action for the first quantized string in the 

presence of a background graviton field hij (X) and 

antisymmetr ic tensor field bij (x1. If hij(k) and Eij(k) &.e 

the Fourier transforms of these fields with respect to the 

transverse coordinates xi, the operator whose matrix element 

between two states gives the correct transition amplitude 

from one state to another, is given by, 
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~ 5b”(TkQ~dD-‘k f~;; <k) t~~j Ck) 5 (a,l+~)x’ 
0 

s i k Jdr fiu- $I,&,) xi &-&)x” f hti(xHbti(x,j 
TT 0 

- i A’ A’ i- Liijt (x) + bijj, (x)$1 

where f,, denotes aflax& for any function f. Let us define, 

B,j <x) =2w b,j (X) (2. to) 

Finally, note that the addition of a term, 

~sd~fTTdgih;j (X)tb~ CX,5 ~'(a,+a,)k (. ) 0 
2 it 

to (2.9) does not affect the transition amplitudes from one 

state of the string to another in first order in h and b, 

since in the zeroth order approximation, equations of motion 

for lj gives (ar+a,)Aj=O. Thus to first order in the 

external fields, the effective string action may be obtained 

by adding to (2.1) the expressions (2.9) and (2.11) without 

the factor of i. We may 

then write down the full effective string action as, 



s = +r Jtk (Y&r Ias Cx) f a* Xi YX'+ip f+(k& 
0 

+B~j (X) ~~‘a,X”a,x”- is,j,(%)~~e~’ E,,aQx’ 

+& a, (Xi ?‘Ai Bii Cd)] (2.12) 

where, 

(2.13) 

S A;jk = (a, Bjk + a, 8,~ + a, &i)/z (a 14) 

=+ 3’” (8,~ k+ 8&tj -aj,,) (z”5’ 
8 8 

Eq.tZ.12) may also be obtained directly from the expressions 

derived in11sJby usinq the constraint (2.6). This lagrangian 
15 is that of a supersymmetric non-linear sigma models with a 

Wess-Zumino term16-18 . (2.12) is invariant under the N=1/2 

supersymmetry transformation laws, 

6)+ r;: - (a,-a,)X”‘E (r-16) 

where E is a real one component spinor. Moreover, the QrOOf 

of invariance of (2.12) under the above supersymmetry 
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transformation does not require the use of equations of 

motion. (This is related to the fact that the auxiliary 

f iel,ds vanish identically when (2.6) is satisfied), As a 

result, any extra term added to (2.12) will keep the full 

action supersymmetric if the extra term is supersymmetric by 

itself. Eq.(2.12) also shows that Bij couples to the string 

as a Kalb-Ramond field 19 . 

Let us now turn to the effect of introducing background 

gauge’ fields. They may be divided into two classes, one 

corresponding to the diagonal generators of the E8~~8 or the 

SO(32) groups, and the other corresponding to the 

off-diagonal generators. First we shall consider the ones 

corresponding to the diagonal generators of the group. 

These states are labell.ed by two indices i and I, where i is 

the polarization index (i=1,...8), and I is the internal 

index (10<1<_25) labelling the 16 generators of the gauge 

group. The vertex for emission of such states with momentum 

k is given by, 

~~~“d~c(ac-a,)x~+~~xmx~3(~+a,)x1 
0 

pnxbl 5,, (z*nl 

Hence in the presence of a background gauge fie1.d 

AiI(xi) the effective action acquires a term, 

sp *+ $dyfwdrIA,,tX) (&-3,)x" 
0 
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-i A,,,, (x9 x*x~l f+a,+a.) x9 
ha 19) 

absorbing a factor of (- 2 K) in AiI. The reason for 

choosing this particular normalization will become clear 

later. It is easy to verify that (2.18) is invariant under 

the supersymmetry transformation (2.16). 

Finally, let us turn to the off-diagonal gauge fields. 

This states are given by the direct product of the massless 

states of the fermionic strings in the left handed sector 

carrying vector index i, and the ground state of the bosonic 

string in the right handed sector carrying momentum Q1+ki, 

where k1 is the physical momentum of the state, and Q1 is a 

vector in the root space of the gauge group r labelling a 

particular off-diagonal generator of the qroup. The 

emission vertex for such a state is p~~o~tiond. to 

p pc f(a,-a,) xi+ h83 )r” AA3 
0 

e i(L,x”+ I% 2) 

Hence, in the presence of a background gauge field 

Ai(xi,Q1), the action receives an extra term, 

+ (-A) {d~~‘%r E f(a-b)xi A&h) 

-2 A,,, (x$ pt) p A”;3 eihX1 

with b#bevLy normoLiicd A, ~X,~~. 
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H ere the sum over p1 runs over all the roots of the group. 

If we define, 

Ai c x$ XI) = $ A; (d# p,) &bzx* (2.21) 

Then (2.17) may be written as, 

s, = a+ (- ;k) Sd4~ U&-&) x” A,CX3, $1 

-i 4,rn o&x’) iM A”3 
which may again be shown to be invariant under the 

supersymmetry transformation law given in (2.16). Eq.(2.22) 

may also be derived from (2.18) by applying the gauge 

transformation operator constructed in Ref.20 on this 

expression. 

Thus, in the presence of arbitrary background 

gravitational field gij, antisymmetric tensor field B. lj' and 

gauge field AiI and Ai( the full effective action for 

the first quantized heterotic string is given by the sum of 

Sl1 S2 and S3. This action is invariant under the N=1/2 

supersymmetry transformation given in (2.16). 

For doing quantum calculation, however, it is more 

convenient to replace the 16 right-moving bosonic 

coordinates X1 by 32 right-handed Majorana-Weyl-fermions ys 

(s=1,..32). For the heterotic string with SO(32) gauge 

group, the 32 fermions belong to the fundamental 
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III. One loop ultraviolet divergences in the theory 

In the last section we derived an expression for the 

action for the heterotic string in the presence of arbitrarv 

background fields. Althouqh these results are valid only in 

the weak field approximation,the resulting two dimensional 

field theory has an exact N=1/2 supersymmetry, and may be of 

interest in its own right. With this in mind, we shall 

study all the one loop divergences in this theory, and 

derive the constraints on the background fields required by 

the vanishing of all the one loop divergences. In 

interpreting this result, however, we must keep in mind the 

fact that we should take these constraints seriously only to 

first order in the background fields. 

We use the background field method for our analysis, 

which have been widely used by many authors l7 p2i~~zzIn this 

method, each bosonic coordinate X1 in the action is replaced 

by xi+lli, where Xi is the background field satisfying the 

classical equations of motion, and x1 is the quantum field. 

We may then expand the action in a power series in R, and 

derive the Feynman rules for calculating graphs involving 

the II' lines. In this method, the external lines are always 

made of the background fields Xi, whereas the internal lines 

are always made of the quantum fields x1. The fermion fields 

JIs * and X1 are treated in the same way as in ordinary 

perturbation expansion, and hence they appear both, in the 

internal as well as the external lines of a graph. 
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Although this method can be used directly to calcu!~ate 

all the counterterms, we loose explicit general coordinate 

invariance in this method, and hence the calculation becomes 

very complicated. This problem may be avoided by expanding 

the action in terms of the normal. coordinates Ei(X,n) 

instead of the fields II i themselves. Sl(X,x) is defined as 

5” (x,Tr) = dx” El 61 I 
two 

where x1 is defined through the equations, 

&& + pjik dgi g = 0 

S(o),= xi , Xi(l) = )&+ 
Physically, Si may be interoreted as a vet tor , whose 

direction is along the tangent vector at X to the geodesic 

passing through the points X and X+n, and whose length is 

equal to the length of the geodesic between the points X and 

x+n. The fields E1 transform covariantly under a general 

coordinate transformation on the manifold spanned by the 

coordinates X1. Let us also define, 

5@- = eQi Xi> AhsehAAL 

where ea i are the vielbein fields, satisfying, 



17 

The action for the heterotic string after the 

replacement of X by x+n , and using the X1 equations of 

motion takes a simple form when expanded in terms of the 

fields Ca. The part of the action (2.28), that does not 

involve the field $', represents the standard action for a 

supersymmetric non-linear sigma model with a Wess-Zumino 

term, with the restriction that the spinors X1 are 

Majorana-Weyl. This theory has been studied by previous 

authors, and the extra term in the action from this term, 
. . 111 obtained due to the replacement of X1 by X1+x1 is given by, 

1 ,ldvfdc r&z” a* f^ - Bab* (S”a,sb-sba,X”) 
2lr 0 

3qb + 0(X”) +oom~ 

where, 

ab B ot = (UQb,&~$ eaA ebj s",) at xk 
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representation of the group, whereas for the heterotic 

string with ESxES as its gauge group, the fermions belong to 

the (16,1)+(1,16) representation of the SO(16)xSO(16) 

subgroup of the ESxES group. (In the rest of the paper we 

shall assume that the background gauge fields always belong 

to this SO(16)xSO(16) subgroup). The current (a,+a,) X1 may 

then be expressed in terms of the fermionic coordinates as, 

(a, t be) xx = - & v T=(p,+p,) Y 
where T1 is a diagonal generator of the gauge group, 

normalized to tr(T1)2=l The action S . 2 may 'then be expressed 

in terms of the fermionic coordinates as, 

&Jdr(=dcr $iT’e’v <A,, ;a,x” 
0 

- & XL eq hi &, (x)j 

Since the J, "s transform linearly under the SO(32) or 

the S0(16)xSO(16) groups, the generalization of (2.24) to 

the case of arbitrary background gauge field A:(x) (TM 

denotes an arbitrary generator of the SO(32) or the 

~0(16)xSO(16) group) may be obtained from (2.24) by a global 

gauge transformation, and is given by, 

h $dyf%e v T’ Q’ Y t 4: (x) + XL 

- * x:p, x” A*l, 003 (2.25) 
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Since X'qaXi is antisymmetric in i and t, we may replace 

AM i II by FMia/2 in the weak field approximation, where, 
I 

FM = AFE - firi -t f”“’ A; AI r;L (2.4 

> a 

Here fMNP are the structure constants of the group defined 

through the relation, 

CT”‘; TN] = -< fMN’ Tp 

Thus the full action of the heterotic string in the 

presence of an arbitrary background field is given by, 

+ Bti cq’ 4 )(“a, x’ -is& (x) xi e’k 

+ * & (Xi P4Ai Qj C%)) + i F’ e’ a, v 
+ ~s(~)sJ~v’~ A; 3, Xi- + FTL XL Q,?j] (2.28) 

This action is invariant under 

transformation, as shown in append 

the N=1/2 supersymmetry 

,ix A. 
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is the spin connection, and, 

ZicLj = ebk eaL Fibaj 

= aim I ai pi; - a; FRY - eg; tit t Q 6J (3.9) 

ii is 17 the generalized curvature . S ijk has been defined in 

Eq.(2.14). In writing down (3.6), we have ignored the O(c3) 

contribution, since it does not contribute to the one loop 

amplitudes. Terms of order Cl2 may contribute to one loop 

amplitudes involving external X lines. The graphs involving 

external X lines, however, are related to the graphs 

involving external X Sines due to the N=1/2 supersymmetrv, 

and hence, we shall not consider any graph involving 

external X lines in our analysis. Due to this reason we may 

ignore all terms of order X2C. 

Next we must turn to the terms involving the @'s. 

Again, in the term involving Cs@tAiIj we may replace X+n by 

X, the extra terms being of order X25. The analysis of the 

term independent of X may be carried out in the following 

way. It has been shown 21 that in a suitable frame, 

a, ( )(A++) = 3% xi +(qs) i 

+ ' R",bj 

3 

(aa x9 5" 5b+o(xs) (34 
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AyCxt77) = AT(X) t (DjAk);+ 

+~t~~D*A~)~-~ R~jiLArtSS'S' (3.") 
where, 

(DJ A% = 34 AT -l”;t AZ 

(Dax)O.= a,5”+ Qabizb &Xi 

= eaj f 43’ + PJhi xk $ X”5 (3.13) 

and R is the usual Riemann tensor, given by the right hand 

side of Eq. (3.9) with $ replaced by r. 

The total action for the heterotic string, evaluated at 

X+n is then given by, 

Ig’ Cx”) + z+ pTpe r q( 5% a* 3 a 

_ BI,L <5Qqsb-5b,qs”) tB;& Bcb’ S’.Sb 

+ v pq T’? ‘+J f AM, [X) (&3 1” +b, d, zQ &xL’5 

+ T Q”<Tw’y (& fi”), -Zb-(?ii%)9 

-j.$~ @T”ct/ $(D&Db A”)A +Riabk A;$ %x-Sb 

- + v fqT”Y $& (x) x”f$] (3.14) 
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where IB(Xl) denotes the part of the action involving only 

the background fields Xi. This part is irrelevant for any 

quantum calculation. 

With this effective action, we may now proceed to 

calculate all the one loop counterterms involving the 

external 4Js and X1 fields. During this calculation we 

always have the Xl's as external lines, Sa and XiVs as 

internal lines, and the 4~'~s as both, internal and external 

lines. The details of the Feynman rules, and the 

calculation of various graphs have been presented in 

appendix B. After using the equations of motion for the Xi 

and the JIs fields, the ultraviolet divergent part of the one 

loop effective action may be shown to be proportional to 

i 1 cl2 + 
I #Cooj 

2n) k2tit 
(~x”aqxj-h*lq(x~ap%J) 

-f i3P”Twv f - a,? SabL .FrL 

+ wh)~L+f ( MNp A; Fop,) &x” $1 
Hence the finiteness of the model to one loop order gives 

the following constraints on the background fields, 

(fia F”jaL - Sabt Fz ro 
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where 8 denotes the full covariant derivative, including the 

gauge, as well as the spin connection. Also, note that Eq. (3.17) 

may be written as (D,F? aL- -0, where D is the generalized 

covar iant derivative 17 , including torsion on the manj,fold. 
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IV. Discuss ion 

In this paper, we have derived an expression for the 

heterotic string in the presence of arbitrary weak 

background gauge, gravitational and antisymmetric tensor 

field. The result is a two dimensional local field theory 

with N=1/2 supersymmetry. A consistent formulation of the 

string theory requires that the two dimensional field 

theory, representing the first quantized string action must 

be conformally invariant, and have vanishing B-function. 

Although it is possible that the theory may have zero 

B-function at some non-zero value of the coupling which will 

not show up in the perturbation theory, we have assumed that 

the B-function must vanish order by order in the 

perturbation theory. This, in turn, implies that the theory 

must be finite order by order in the perturbation theory, 

except for wave-function renormalixations. This requirement 

gives strong restrictions on the background fields. In this 

paper we have studied the possible ultra-violet divergences 

in the two dimensional theory at one loop order, and have 

obtained constraints on the background fields by demanding 

that all such ultraviolet divergences must vanish. These 

constraints have been summarized in Eqs. (3.161-(3.17). 

Althouqh these conditions have been written down in a 

nice covariant form, they should be taken seriously only to 

order linear in the background fields, since the original 
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action was derived by ignoring all terms containing more 

than one power of the external fields. To this order, 

the symmetric and the 

antisymmetric parts of Eq. (3.16) are equivalent to the 

equations, 

R. . =o *a&J 

whereas Eq. (3.171 gives, 

aL\ F!? = 0 A4 (4.3) 

Note, however, that these equations are precisely the 

equations of motion of the graviton, anti-symmetric tensor 

and gauge fields respectively to first order in these 

fields. This leads us to believe that there is a deep 

connection between the condition for finiteness of the two 

dimensional field theory describing the action for a string 

in a given background, and the full equations of motion 

involving the background fields. 

Finally, we shall analyze the action (2.28) in the 

special case where bi j=O, and the gauge field is equal to 

the spin connection. Most of the attempts to compactify 

string theories have been based on such manifolds 6,8 . In 
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this case, the holonomy group of the underlying manifold, 

which is a subgroup of SO(6) is identical to the subgroup of 

E8xES or SO(32) in which the gauge field takes its value. 

Components of the field rl, which are singlets of this group 

decouple from the theory as a set of free fields. 

Similarly, components of X, which are singlets of the 

holonomy group, decouple from the theorv. Components of X 

which are not singlets of the holonomy group, on the other 

hand, transform in the same way as the components of J, which 

couple to the background gauge field. Hence there is a one 

to one correspondance between the @'Is and the Xi's, and we 

may combine the fields 0 and X to get a Majorana spinor x 

with both, right and left handed components. Since the 

gauge field strength F is equal to the curvature tensor R in 

this case, we may write the full. action as, 

s= & Jdrf=d~ f &. a,x” 3’~’ 
0 

+ i SEA e*(a* 6’; + rij,;t, x4) xi 

+ & %k2 z*: (I’cyp) 3Ck 2(/+v,) x^l (4.4) 

which is the action for an N=l supersymmetric sigma model 

with background metric gij. This guarantees that the model 

is finite to all orders in the perturbation theory if the 

background metric is Ricci flat". 
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Appendix A 

In this .appendix we shall show that the full effective 

action for the heterotic string in arbitrary background 

field, as given in Eq. (2.28) has an exact N=1/2 

supersymmetry. For this purpose, we shall express the 

action explicitly in terms of g. ij’ Bij and A: as follows: 

S -+ ~d!!rkr ;e 
0 

(x) (a,- a,) x” t&g+ ab) xJ 

+ ig,j h”(~+a=)AJ - i$&$ (++&I xi PAi 

+ BG (%) (&-as) X” (&+ 9,) Xi t * Bij (%I Ai(a,+aW)Ai 

- i B~j,, (& +a-) Xi A' AA t i ~'C&-%) Ys 

+ vs(Tw),t \Yt f A; (a,-&) x" - 3 fi;,, h&A' 

where we have used the one component notation for the spinor 
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fields Xi and Vs. Under supersymmetry transformation with 

one component spinor s, the various fields transform as, 

Thus, 

S3(x) = & i d 
where f is. any function of X. Using Eqs.(A.2)-(A.4), we 

get, 

sd, =! tiEca~-a,)i~~;~*c~~+a=)A’ 

+ BAj Ai (&+a,) 23 t*ih rv*cr% !P 
r(+ &)(A; A”)- ifMMpA: A” ffi;,k ;3” AL 

+ i A; Ca,-a,) XL33 
Contribution to 6s from the first term in (A.5) 

2 vanishes except for the boundary terms . Contributjon from 

the second term may be written as, after doing an 

integration by parts, 

ssr $+ $4&6 I- (a, -3,) &‘T;+ v4) A; f 
0 
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-i y= T;+ yt fyNPA; )rA f”;+ A%’ 

t A; (a,-a,,xAsl 094 

From Eq.CA.2) we may write the $ field equations of motion 

as, 

i (a,-2e, v' t Tz @ f AM, (a,-%) Xi 

-i f$ A’2 - & fMNP$ 44; A9;3’0 (A.7) 

which gives, 

(&-a,, l 'f" T,M, Y*) 

= ys [TM, T’3, ‘yf i f Ai (a,-&) XL 

-ifi;, A’&-+ ,,,‘A: R;$ J 

Substituting this in (4.6), and using the relation, 

[Tw, TN] = -i fMNP TP W) 

we get, 



2a 

bs = -A& s&v& v’ Tz y’ 
0 

MLK 
f f’“’ A; f$ A: Ai hi (A.1 0) 

Using the antisymmetry property of the product of IfsI we 

may replace fMLR fLNP by, 

(f?. II) 

which vanishes by Jacobi identity. This shows that S is 

indeed invariant under the super symme try transformation 

(A.3). 
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Appendix B 

In this appendix we shall give some details of the 

Feynman rules, and evaluation of various one loop 

ultraviolet divergent graphs in the effective two 

dimensional field theory. The relevant action is given by 

Eq.(3.14). Absorbing an overall factor of (l/v) in the loop 

counting parameter, we may write down the propagator for 

various fields as, 

A, 0) = i- b,, v: te 
s, (PI = ip w gab 

b*+ tg 

sv (p) = !gP iy A,, 
pTTz 

(B-l) 

03.2) 

(B.3) 

The various propagators are diagrammatically 

represented as in Fig.1. The various vertices of the theory 

that are relevant for one l.oolY calculation are shown in 

Fig.2. They are given by, respectivel.y, 
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(a) : * 5 BTb (Z#+-k)*+i 8: Bcbrl 

+* %nban (a,x*sx”-~“~~“a,x”)5+ 

(b) : - i gbQ f”’ 
d 

(cl : $ A; aa%” F4 Tys 

(&) & 1 @,6”), a, XL + 6; ab”e a,x’ 

+ i k,* f?; 3 e’ Tc 

(e) : 3;’ 4”’ Tf”s r@, A’), t k,, + 
4 

@r f+% @‘it &XL 

t + f bkDb A’), + ‘+*bk RM,&Xa3 + (;,$J 

the double lines always represent some function of 

the background fields, which are stated explicitly in 

Eq. (B-4). Notice that in writing down the Feynman rules, 

all the quantum fields have been represented in the momentum 

space, while all the background fields are still represented 

in the position space. If the effective one loop action 
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calculated with these Feynman rules has any dependence on 

the momenta k, carried by the background fields, we must 

replace it by ia, if the momentum is incoming, and by (-ia,) 

if it is outgoing. Finally, note that in calculating the 

combinatoric fat tor associated with a given graph, we must 

take into account the fact that the fields x and 6 are 

Majorana, so that any of the two lines coming out of a 

vertex quadratic in J, (or X) may be contracted with a given 

external U (or A) field. 

In order to study the ultraviolet divergence structure 

of the theory, we must list all possible operators of 

dimension two. As mentioned in the text, we shall consider 

only those operators which do not carry any X field, since 

operators with X fields are rel.ated to those without by 

supersymmetry transformation. There are four such possible 

operator s54 given by, 

s,; (x) a, x” aq xi 
T.j (x) ~~ a,x’a,xj 

a)?, o() pT”,q, a,)@ 

piw (x) FTYQqy ENp &c’ 

Mcrcove?, (8.7) and (6.8) aTe not indebndont since y ti Weyi!. 
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were S, T, P and Q are arbitrary functions of the fields 

Xi. Graphs contributing to (B.5) and (B.6) have been shown 

in Fig.3 (a)-(d) , while those contributing to (B.7) and (B.8) 

are shown in Figs.3(e)-3(i). 

The evaluation of most of these graphs is 

straightforward. The contribution from Figs.3 (c) , (d) and 

(i) may be shown to be ultraviolet finite. The total 

contribution to the effective action from Figs.3(a) and (b) 

is proportional to, 

(i$fi & l )pmaan ca,x”a”x” l-r +t 
- c”p a##( xm a, Xh) 

Total contribution to the effective action from 

Figs.3(e) and (f) is given by, after doin afi integration by harts 

and vsinq the equations of motion (A.?) $0~ tAe y fieLb, 

(B-9) 

c - & etip a p x L Seai, (D,F\‘4), + +D&LR”)a 
-(D& AM),3 &++f MNP A: (D&FIN), ,g+,;y,, 

. 
where we have used Eq.(3.7) to express F3 ab o in terms of the 

spin connection and the torsion. Contribution from Fig.3 (h) 

and Fig.3(j) are given by, respectively, 



‘is(& j-g(+)* G)“L aq xi f**.&; 
-i awSab&f 9 nzrA; A: 3 qr”P’Y 

{&II) 
and 

A,nA; A= &J(’ 

Evaluation of the graph shown in Fig.3(g) is somewhat 

more tricky. A direct calculation of the graph gives a 

contribtion of the form a+b$, where a and b are functions of 

the background fields. Since p is the total incoming 

momentum carried by the fermion field JI and the background 

fields attached to the left vertex of the graph, in writing 

down the effective action, we may replace # by iy, where the 

aa operator acts both, on the incoming fermion, as well as 

the background field. The contribution to the effective 

action from Fig.3(g) may then be written as, 

)(&)[ ~~T~T~P~A~ i& (AC y) 

t i y’p”TN eqy f A:(( Det?‘~&XL+fl~~b;&$ 
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L A; ((Do& A’jla, Xe t A; What + X’)jl 

(8.13) 

This may be simplified by using the equations of motion for 

the $ fields given in Eq.fA.7). The final result is, 

a, AP, aax’ +.a v P’T”TnTPy AC FI; &X+AE 

+f MNpv T”e”‘j’ f P; ((A’)L &XL 

+ p+; mbaA a, xg) - A’* ((Da AN), We 

+ A”L WbaL 3, x933 (8. lb) 
Adding (B.91, (B.lO), (B.111, (B.12) and (B.141, we may 

reproduce Eq.(3.15) of the text. 
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FIGUFECAPTIOSS 

Fig. 1. Propagators for various fields 

Fig. 2. Various vertices relevant for calculating one lcop count 

Fig. 3. Cm? loop ultravioletdivergentcontritutio~~ the effective 

action involving external x' ard ys lines. 
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