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In this note we review the bunch to bunch longitudinal
instabilities for the Energy Doubler. The definition and discussion
of the impedance which is the crucial parameter for our analysis can
be found in a previous note dealing with a similar subject: the
10 -

Individual Bunch Longitudinal Instabilities.

1, Definition of Modes of Instability

There are two possible groups of modes of longitudinal insta-
bilities:
‘a, The internal bunch2 mode (m), The instability can develop

around the contour of a bunch as shown : A m= 4
bunch
N

in Fig. 1. The mode number m (=1,2,3...)

is the number of waves around the

contour of the bunch.

Mode number m 1 is usually

called dipole mode, m = 2 quadrupole,

and so on. The wave shown in Fig, 1

propagates around the center at a

frequency m times the phase Fig. 1. Internal Bunch Mode

oscillation frequency,
b. Bunchwto—Bunch1 mode (p). For a given internal-bunch mode
number m, the instability can propagate from bunch to bunch as

shown in Fig. 2.
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Fig. 2, Bunch-to-Bunch Mode

The number p of waves around the circumference of the
machine is the mode number, The instability of one bunch is

carried over to the next with a phase slip of

27p /M

where M is the total number of bunches. The number M is not
necessarily equal to the RF harmonic number h, but in the
following we shall always make the assumption the M bunches
are equally spaced.

2. The Complex Shift®™>

A charged bunched beam induces a current at the walls of the
vacuum chamber, This current when crossing elements along the
vacuum pipe (cavities, bellows, pick-ups,..,) creates high-
frequency voltages which act back on the beam, The main effect
of these voltages is a shift of the phase oscillation frequency
modulated within a bunch m-fold and from bunch-to-bunch p-fold.

In the case the bunch has a m-mode perturbation the complex

shift of the wave propagation around the contour of the bunch is
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where w, is about m times the unperturbed synchrotron angular
frequency W, I the average current in M bunches, B the bunching
factor defined as the ratio of the bunch length to the bunch

separation, ¢ the stable phase, w_. the revolution angular frequency,

)
Z, (wk) the longitudinal (complex) coupling impedance10 at w = wp
and hm(wk) the Sacharer's functionsl.

The shift Aw is a function of the two integers: m, the internal

bunch mode number, and p, the bunch-bunch mode number., If QS is

the number of phase oscillations per revolution,

Wy = (KHwm s )
with -w<k<+o for a single bunch (M = 1) or several bunches oscil-
lating independently (namely the impedance is such the wake field
resulting at very short range), and k = p+klM, —w<k1<+w for
coupled motion of the bunches,

Observe that the growth time of the instability is given by
the imaginary part of the r.h, side of (1). Therefore if the
impedance Z, 1s a pure reactance no instability can occur. The
real part of the impedance Z, is responsible for the growth of
a perturbation, whereas the imaginary part causes simply a shift
of the synchrotron frequency at the mode of the perturbation.

In the following we shall consider three different impedance
models:

a, Smooth impedance

7

= 2,

Sy o2 22 = 2, )
K ""»(/Wo

where Zg is related (actually equal) to the longitudinal

coupling impedance10 |Z/n| as defined for coasting beam, In-

serting (2) in (1) gives
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b. Sharp (High-Q) Resonance

In this case (1) is replaced by

\vav\ - HrRsFMO
wg | =

(4)
’w Sh !/‘ca&v-&

where RS is the shunt impedance of the resonator, D depends on

the attenuation of induced signal between bunches, namely on

the Q of the resonator, At most D = 1, F is a form factor

that specifies the efficiency with which the resonator can drive

a given mode, The maximum value of Fm decreases with m, At

most Fm = 1, which is the maximum for the dipole mode m = 1,

In the following we shall take D = 1, which corresponds to no

attenuation (Q -+ «) and Pm = 1, Doing so, we overestimate the

frequency shift Aw .

c. Low-Q Resonator10
This would be a better representation of the machine

impedance than one given by the model A, which assumes an im-

pedance which increases linearly over the entire frequency

range, The low-Q resonator could exhibit a resonance in the

GHz range, This model can obviously be represented again by a

shift (4), though in this case D is considerably smaller than

unity.

3. The Stability Condition®’37°

Let @ be the rms spread in W, across the bunch, The stability

condition is

R
WD 2 g
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From the expansion of the nonlinear motion of the phase
oscillations we have
z 2
2 h o
ws 24 RZ

where o is the rms bunch length and R the machine radius. Also

we have for the bunching factor

M6
R V27
which is valid when we assumed a gaussian distribution of the
charge along the bunch}and B is defined as the ratio of the peak
current to the average beam current,
Combining everything together then one derives the following

conditions on the rms bunch length., From (3)

oz R(%’W

and from (4)

VL. aos#ﬁ ;B >
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In the smooth case, (5), the stability condition depends

only on the average current per bunch Iy, in the case of a resonator
(6) it depends on the total average current I. 1In either case
there is no dependence on the total number of bunches.

Observe also that whereas in (5) there is no dependence of
either mode number p or m, in (6) there is only a dependence on
the internal bunch mode number m, and the worst situation corresponds
to the dipole mode m = 1, 1In the following we shall consider

therefore only this case.
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There is no dependence on the beam energy.

In the case of slow acceleration cos¢S ~1.

We take V = 1 MV and h = 1113,

The main results are shown in Tables I, II and III for the

following two cases:

10

Case I: 1100 bunches with 2x10 particles per bunch,

I = 150 mA and I, = 0.15 mA

b
Case II: 15 bunches with 1011 particles per bunch,

T = 10 mA and I, = 0.75 mA

10

b
As explained in an another note

we shall assume for the
Energy Doubler ZO = 50 @, For the high-Q resonator model it is
plausible to assume for the shunt impedance RS a value around
30 k2, because this is certainly larger than that was possible
to achieve in the Main Ring cavities with dampers and it is
also what could be expected from spurious resonances in other
elements around the ring, For the high-Q resonator model very
likely D ~1.

For the low-Q resonator model we model we shall take, in a

way arbitraily

DRS ~100 kQ

In Tables I, II and III, the growth time of the instability
(in units of the phase oscillation period TS) has been calculated
by taking the imaginary part of (1), In the same tables we
give the bunch area S for 1000 GeV and 1 MV total RF voltage.
The case of the resonator (High-Q, impedance model B, Table II)
looks allright, but in the smooth case model (case A, Table I)

the bunch area at the threshold exceeds the available bucket area



-7 -

Table I. Bunch Parameters for the Impedance
Model A, Zo = 50 Q@

Case I Case II
o(m) .92 1,27
S(eV-+s) 13 25
/T 7.3 3.8

Table II. Bunch Parameters for the Impedance
Model B, R, = 30 k2, D « 1

Case I Case II
o (m) .40 .16
S(eV:'s) 2,5 0.4
T/T 39 234

Table III, Bunch Parameters for the Impedance
Model C, DR, = 100 k@

o(m) .60 24
S(eVs) 5.6 0.9
/T 18 105
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of 10 eV-s, Observe that things do not improve by raising the
RF voltage.

Our estimations for the 'smooth case' are certainly too
pessimistic, because the impedance model is not very realistic,
We know that actually Z, reaches a peak around one or a few
GHz and then rolls off, Table III which corresponds to this
low-Q model gives likely a better estimate of the beam parameters
at the threshold of stability.

Observe that >>T and therefore the instability is reasonably
slow,

The bunch parameters as shown in either Table II or III are
reasonable, namely bunches of that size should be easily fitted
within the available momentum aperture of the Energy Doubler.

Finally observe that Case I is more sensitive to the in-
stability than Case II.

4, Possible Cures

We give a list below of possible cures without going, though,
into too many technical details,

a. As shown in Table II and III the bunch size at the
threshold of stability is reasonably small compared to the
available RF bucket area and momentum aperture of the Energy
Doubler. Also the momentum spread of the beam is reasonably’

small.10

Therefore if one can keep the beam continuously at

the stability limit very few problems will arise, To accomplish

this one needs a "Bunch Spreader'" which continuously, in a

dynamical fashion, blows-up the bunches to the desired area value.
b. Reduce ZO and the shunt impedance R of the spurious

modes with a controlled bookkeeping of the various items which

are to be installed within the vacuum chamber of the Energy Doubler,



-9-

Damping of parassitic modes may end up to be crucial.1
c. Enhance a synchrotron frequency spread across the bunch

2,9 With

with a higher harmonic number cavity (Landau Cavity)
this technique, at least in principle, one can avoid an increase

of the bunch area. For instance in Case I with the low-Q impedance
model (C, RsD = 100 kQ) a spread

LU

Vs

is required with a fundamental RF voltage of 1 MV (h = 1113).

d. Bunch-to-bunch modes can also be made stable with a
spread in synchrotron frequency from bunch«to-bunch.2 The amounts
of requirement for spreads are the same as in the previous case c.
Modulation of the RF voltage at the revolution frequency enhances
this spread. But it is necessary that the variation of the phase
oscillation frequency from bunch-to-bunch is faster than the
mode of instability itself,

8 Because the bunches are

e, Longitudinal Active Damper,
too short (their length corresponds to GHz frequency range),
one can only hope to damp the dipole mode (m = 1), which involves
oscillations of the bunches barycentre, The bunch-to-bunch mode
n = 0 is already taken care by the low-level phase loop in the
RF system. As one can see in Tables IT and III, the instabilities
are expected to grow relatively slowly (one second) therefore a

slow, wideband longitudinal damper should be feasible,
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