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I. Introduction

Beam-beam interaction, which is generally considered to be the most
important factor in determining the lifetime of colliding beams, is non-
linear in its essential characteristics. There is no "solution" for the
beam dynamics when beam-beam interaction is involved, at least no solu-
tion in the sense that there is a solution for the beam dynamics in or-
dinary fixed-target accelerators. There exist of course nonlinear fields
in any real accelerators even without beam-beam interaction. The crucial
difference is that, in fixed-target accelerators, the duration of beam
is a matter of seconds while it is several hours or more in storage rings.
The most important approximation in the standard treatment of nonlinear
beam dynamics is to consider each resonance separately. The Hamiltonian
is then integrable and the solution can be found to give the stable phase
space area and the resonance width. The approximation is quite adequate
for practically any type of beam behaviors in ordinary accelerators, a
typical example being resonance extraction. In contrast with this, it
has been clearly established by now that the single-resonance approxima-
tion cannot explain the observed beam lifetime in storage rings both of
electrons and'protons.l One must deal with non-integrable Hamiltonian
systems and there is as yet no established general formalism that can
lead to solutions. I am not happy that it is necessary to state this
simple fact before anything else; some people (influential ones at that)

at Fermilab seem to suspect or even believe that solutions are known in

* This report is meant to be a supplement to TM-910, "Field Quality of
Doubler Dipoles and Its Possible Implications", October 15, 1979. Non-
specialists may benefit from reading Section V of the report.
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the East and in the West but not in Illinois.

The purpose of this note is to explain the recent work by S. Kheifets
at SLAC2 and also a similar work by Sandro Ruggiero which is still in its
early stage of development;*ﬂ The work by Kheifets has been cited by some
people (much to the dismay of Sam Kheifets himself, I am sure) to scare
innocent folks at Fermilab as a conclusive proof that the colliding pro-
ject at Fermilab is doomed to be a failure from the start. The work is
certainly very interesting but, for all I know, it simply is not possible
to predict in a convincing manner the beam lifetime of proton storage
rings with his formula. The fact that I cannot predict the beam lifetime
is perhaps not important {(except, of course, for me) but it is important
to recognize the truth that nobody can unless one takes shots in the dark
seriously. For us, there are only two choices 'available: either forget
about the doubler as a colliding device or do whatever we can and follow
the advice given by a fair lady of Venice long time ago, "You must take

your chance;".

During the past ten months or so, I have discussed the problem many
times with Sandro Ruggiero. Although we disagree in some technical de-
tails, I believe we agree in the essential points. I am gratefult to him

for his unceasing effort to enlighten me on this subject.

%£I. Before Kheifets-Ruggiero Models

It is worthwhile to review briefly the situation before Kheifets
and then Ruggiero proposed new models of beam loss mechanism. Since the
single~resonance model cannot explain the observed beam lifetime, some
other mechanism must be considered and, broadly speaking, there have been

two entirely different lines of investigation.

The first is the model proposed by M. Month3 in which one still re-
tains the single-resonance concept but the relevant parameters modulate

in time with a certain frequency. One may call it a dynamic single-

* The fact that the work has not yet been finished makes me hesitate to
express any opinion on it. Here I am taking advantage of the permission
given to me graciously by Sandro. I am of course totally responsible for
any errors contained in my description of his work. I understand a sig-
nificant contribution to the basic idea of this work has been made by
Fred Mills.
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resonance model but some people refer to it as the trapping model. One
obvious candidate of the time-varying parameters is the tune of betatron
oscillation. The familiar phase-space picture (see Fig. 1) with its
central stable area and the surrounding outer stable islands { N islands
for the N-th order resonance ) now expands and contracts more or less

periodically.
?><i or y'
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A particle may have a certain probability of getting trapped by these
moving islands and then deposited at places in the phase space far away
from the central stable area. The gquantitative description of this pro-
cess must include not only the total area of islands but the instantaneous
growth rate of the amplitudes of islands also. For example, if the motion
of an island is so slow that particles go around the phase space many
times before the position of the island changes significantly, the process
is adiabatic and particles will just follow the islands. There will be

no depositing of particles. In the opposite situation, islands will move
in and out without trapping particles. The model proposes that the prob-
ability of trapping is proportional to the area of islands and decreases
exponentially with the growth rate of the amplitude. Because of the char-
acteristics of resonances, particles are trapped when the amplitude is
small and dropped from islands when they become leaky at large amplitudes.

There will be a continuous pumping-out of particles from inner to outer
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area of the central stable region. It is of course difficult to esti-
mate quantitatively the trapping probability for a given situation. One
probably uses an expression with unknown parameters and determine these
parameters either from experimental data or from numerical simulations.
The idea is certainly ingenious, perhaps too much so for the taste of
some people. In this model, crucial parameters for the beam lifetime
are power supply ripples, synchrotron oscillation frequency, chromatici-

ty and the magnetic aperture of dipoles and quadrupoles.

Another type of dynamic single-resonance model tries to incorporate
the diffusion-like behavior of beam parameters into the single-resonance
picture. In a way, this model may be regarded as a precursor of the
Kheifets-Ruggiero models except that one still tries to salvage the con-
cept of single resonance. I remember I read the report by Hereward4
some years ago but nothing remains in my mind. Consequently, I cannot
talk about this model with any degree of comfortableness. Alex Chao
states in his reportl: “Some attempts have been made in this direction
but unfortunately hindered by the very difficult mathematics." In view
of the renewed interest in diffusion-like behaviors of the beam, I should
probably look at Hereward's report again and compare with Kheifets-
Ruggiero models. Let me simply quote two paragraphs from the Introduc-
tion of Hereward's paper. I find the underlined sentence (underline is
mine) to be particularly interesting since it clearly reveals the funda-
mental difference between Hereward's view and Ruggiero's view of the same
phenomenon.

" Consider the combined effect of nonlinear betatron resonances and
scattering processes such as gas scattering, intra-beam scattering and
guantum emission in electron machines. The diffusion of particles across
the separatrices and deformed trajectories may produce effects which
would not occur if one had the resonances or the scattering alone."

" The more refined theory of nonlinear motion shows that Arnol'd
diffusion and stochastic layers can occur in the absence of any indeter-

minism in the equations of motion. But it seems reasonable to suppose

that a sufficient amount of scattering will "cover up" those phenomena,

and put one in a region where the classical resonance theory is adequate

but needs to be combined with the effects of the scattering."
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As soon as one abandons the concept of the single resonance as some-
thing inadequate, one cannot avoid facing the true difficulty of non-
linear motions. Since there is no mathematical solution, one must either
resort to numerical simulations or try to find some analytic guidance
with quantities that can be calculated from the single-resonance model.

A great deal of work has been done numerically by many people and even

a brief review is impossible for me. There are many technical difficul-
ties involving not only the question of accuracies but also the question
of what parameters are relevant. The running time is usually very long
even for one to ten million revolutions. For the doubler, ten million
revolutions correspond to "the first three minutes". According to Keil
at CERN, the latest round of simulation studies will be done with the
CRAY-1 computer at Daresbury which is known to be 150 times faster than
CDC6600 for this type of problem.

I am afraid it is beyond my ability to make useful comments on the
mathematical progresses made in this field. What follows is simply a
sketch of the standard procedures accelerator physicists have been fol-
lowing, sometimes blindly. A good, readable review article has been writ-
ten by B. Chirikov, "A Universal Instability of Many-Dimensional Oscil-
lation Systems" (to be published in Physics Reports). 1In order to ex-
plain the meaning of "stochastic layers" in phase space, let me take a

nonlinear mapping, which is often called "the standard mapping”. Coor-

dinates are (r,9%) and the transformation from (rn,en) to (rn+l'en+l) is
41 = Ty~ (k/2ﬂ)Sln(2ﬂen),
Ont1 = On t Tnea o

With suitable definition of variables, accelerator physicists will say
this is simply a problem of stationary rf localized in a ring. The para-
meter k 1s the strength of nonlinearity; if k=0, the problem is clear-
ly integrable ( r = const. ). For k#0, there are three types of orbits
as shown in Fig. 2 (see next page). Two dots represent periodic orbits
which can be regarded as orbits with rational tune values. Two continu-
ous lines labelled A and B are examples of the celebrated KAM surfaces.

The theorem of Kolmogorov, Arnol'd and Moser assures us that, for suffi-
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J. M. Greene, PPPL-1489 (Princeton Plasma Laboratory), Nov. '79

Fig. 2

ciently small but nonzero values of k, this type of orbits exist and,
in the limit of kx + 0, they go continuously into orbits with irrational
tune values. The third type of orbits, which did not exist when k=0
(integrable case), appear for k#0 and they seém to fill some portions
of phase space randomly. They are the ones called the stochastic orbits
or the stochastic layers. One of the fundamental problems in nonlinear

dynamics is to find, for a given system, the limiting value of k above
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which no KAM surfaces exist and the entire phase space becomes stochas-
tic. It should be emphasized that KAM surfaces are "impenetrable". 1In
spite of stochastic layers in-between, particles can never cross KAM
surfaces. Because of this, one says the beam should be stable; the ran-
domness in phase is immaterial as far as the beam stability is concerned.
It is not easy to find the limiting strength of nonlinearity even with
numerical studies. J. Greene investigated the standard mapping and ob-
tained the limiting value k = 0.9716 using the hypothesis that the dis-
apperance of a KAM surface is associated with a sudden change from sta-

bility to instability of nearby periodic orbits.5

For more general cases, the only guidance we have is the "overlap-
ping criterion” by Chirikov. Almost all calculations made so far for
beam-beam interaction rely on this to find the limiting nonlinear
strength. Chirikov proposes that the density of stochastic layers is
given by

density v s e_c/S p cnl
where s 1s the resonance width divided by the resonance separation
calculated from the single-resonance model. When the density is of the
order of unity, the entire phase space will become stochastic. It is
certainly an order-of-magnitude criterion and any ambiguities regarding
the resonance width (there are ambiguities) are not too important.
Nevertheless, numerical studies made for a few examples have shown that
the criterion is a surprisingly good one. Ruggiero and Smith, among
others, applied the criterion to two-dimensional (one degree of freedom)
beam-beam interaction6 and found that the linear tune shift® £ of the
stochastic limit is ~0.25. Later, Ruggiero extended this to the four-
dimensional case.7 The limit is 0.125 ~ 0.25 depending on the shape of
the beam at the interaction point. 1In either case, the limiting value
is large compared to what one usually encounters in storage rings. For
example, £ is at most 0.001 per intersection in the ISR (eight inter-
sections) and < 0.06 in most electron storage rings. Incidentally,

there is always a question of whether the relevant value of £ should be

*1 regret I have to use this unfortunate jargon here.
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per intersection or per revolution. Some data from electron storage
rings show that one should take ¥n £ when there are n intersections
in the ring. Although the data are qualitative rather than quantitative,

they are suggestive of the involvement of some random processes.

What happens if the number of dimensions (or degrees of freedom) is
more than two? It is quite possible (although I am not absolutely sure
on this point) that the stochastic 1limit will be lower when more dimen-
sions come into play. The number of relevant dimensions depends not
only on added directions of motion but also on whether the parameters
are static or time-varying, whether the momentum dispersion and chromatie-
ity are zero and whether the collision is head-on or with an angle. It
is certainly prudent to design the ring in such a way that the number of
dimensions is kept as small as possible. However, I know of no work
giving any quantitative estimates on this question. The KAM theorem stil
assures us that, below stochastic limit, there will be KAM surfaces in
phase space when there are more than one degree of freedom involved.
Unfortunately the surface cannot surround a finite closed volume. For
example, when there are two degrees of freedom (four-dimensional), KAM
surfaces are all two-dimensional so that particles can in principle move
out of one stochastic layer to another. Eventually, they may sneak out
to a region of phase space far away from the center and this may cause
a slow growth in beam size. This phenomenon is called the "Arnol'd dif-
fusion" and it has been one of the most fashionable topics in accelerator
physics. for the past ten years or so. Even today, the condition §<.005
(the value at which the Arnol'd diffusion is supposed to become signifi-
cant) is considered by some accelerator physicists to be something sa~
cred. Actually, if one tries to trace the origin of this number, the
search often ends up in some unpublished works or informal talks associ-
ated with names like Keil and Courant. According to Moser,8 the Arnol'd
diffusion has been clearly established for only one example. There are
of course numerical studies which indicate a relatively fast growth in
beam size when, for example, the strength of nonlinearity is modulated
in time.9 It is not clear to me whether they are genuine examples of
the Arnol'd diffusion or simply vagaries of particular numerical simula-

tions.

After this long and rambling story on an ambiguous subject, I am
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confident that anyone who has endured to this point is anxious to hear
about the works by Kheifets and by Ruggiero.

III. Kheifets Model?

The idea that the interplay of diffusion, which exists in any stor-
age rings, with the nonlinear beam-beam interaction must be a factor
in determining the beam lifetime is a rather old one. One comment made
by Hereward in 1972 has already been mentioned (see p. 4) as well as
qualitative . evidence from beam studies in electron storage rings (see

10

p. 8, top). Already in 1969, Chirikov, Keil and Sessler in their re-

port on the stochastic limit of nonlinear oscillating systems had this
to say:*

"We have not treated the joint influence of both non-linear reso-
nances and a diffusion process of some kind, e. g. gas scattering. In
this case, non-linear resonances may accelerate the diffusion process
considerably even if without diffusion the motion is absolutely stable.
It is not excluded that ....... it might be of importance in the appli-

cation of this work to proton storage rings."

I mention these not to downgrade the originality of the works by Kheifets
and by Ruggiero but rather to stress that their ideas are eminently

reasonable.

Kheifets restricts his work to 1) electron storage rings, 2) one
degree of freedom (vertical motion only), and 3) weak-strong instabili-
ty. The last condition implies that one beam is much stronger than the
other so that the nonlinear field produced by the strong bunch is not
affected by the beam-beam interaction.** A test particle in the weak
bunch gets a nonlinear, delta-function kick (thin-lens approximation)
at the interaction point. The amount of kick of course depends strongly

* One might regard this simply as an example of "Keep-the-escape-hatch-
open" style of writing.

** In practically all calculations on the beam-beam interaction in stor-
age rings, this approximation is standard. In other areas such as low-
energy proton or heavy-ion linacs and low-energy transport systems, the
requirement for self-consistency’is essential in space-charge problems.
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on the position of the particle Y. Kheifets uses the variables yEY/ov
and y=dy/dt where a, is the rms vertical size of the strong bunch. *

Each time a particle passes through the strong bunch, it gets the kick
Ay = 0 and Ay = F(y)

where F(y) is determined by the particle distribution of the strong
bunch. The distribution function £(t, vy, &) of the weak bunch satisfies

the Fokker-Planck type of diffusion equation which now contains the term
(nwo/2m) {£lt, v, y+F(y)] - £lt, vy, ¥1}

where n is the number of (identical) interaction points in the ring

and wo/2ﬂ is the revolution fregquency. The factor (nwo/2ﬂ) is just

the number of nonlinear kicks per second. In writing this way, one is
only interested in the beam size variation averaged over many revolutions.
Since F(y) is small, one can expand the expression into a series in F(y).

The crucial part of the model comes into the next step.

Kheifets argues that the strong nonlinearity of beam-beam inter-
action will lead to a "fast mixing"” of particles within the weak bunch.
The particle motion becomes random and, regardless of its initial coor-
dinates, a particle is capable of appearing at any point in phase space
occupied by the bunch. This statement is certainly true above the sto-
chastic limit. Below the limit, however, there are KAM surfaces which
are impenetrable and any randomness is mostly in the direction of phase
and not in the direction of amplitude. Stochastic layers are extremely
thin in the central area of phase space. For electron storage rings,
there is of course quantum excitation in addition to gas scattering and
intrabeam scattering. One can therefore imagine that the fast mixing
is more likely in electron storage rings than in proton storage rings.
Kheifets mentions these diffusion effects but he certainly considers the
diffusion action of beam-beam interaction to be independent of any other
mechanism. This is the point Ruggiero objects and I must agree with him.
If one accepts the argument by Kheifets, F(y), Fz(y), etc. must be aver-
aged over all particles in the weak bunch. Clearly the first term, lin-
ear in F(y), vanishes for a symmetric (in y) beam. The second term when

averaged over the distribution f£(t, y, y) gives the diffusion coeffici-

*
I do not always use the same symbols as Kheifets.
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ent Dbb:

Dy, = (nu_/4m) <F2(y)>
Fokker-Planck equation for £ now contains this new diffusion term due
to the beam-beam interaction. However, it is obvious that one should
not include the linear part of F(y) for the estimate of Dbb' Effects
of the linear part are entirely predictable and the stochastic behavior
cannot be caused by the linear part. How to subtract the linear part
is another feature of his model and Kheifets is forced to introduce an
arbitrary recipe with one parameter which should be found by fitting ex-
perimental data to his formula. He says

"It is not quite clear yet if and how this constant can be

expressed through physical parameters of the storage ring.F"

Ruggiero's model is a step to rectify this situation.

In the limit t -+ o , the solution of the Fokker-Planck equation gives

the stationary beam size Oy

52 =62 4+p

v v pp’ (20)

where o (= l/damping time) is the damping rate of the vertical oscilla-
tion. Since Dbb is an integral over the distribution of the weak bunch
with EV ’ this is an equation for Ev .

For electron beams, the vertical beam size Oy is usually much :

smaller than the horizontal beam size O The beam-beam interaction

F(y) is
Fly) = (2mc/B})-£-VIF2E ¢ (y),
$ly) = -y f'du L L oo’
Yyu + b2

where £ is the linear tune shift, B; is the betatron amplitude function
at the interaction point and b # OV/Uh << 1. The function ¢ (y}, which
is antisymmetric in y, is shown in Fig. 3 for b = 0.04. If one sub-

tracts the linear part of ¢ (y),

linear part of ¢(y) = 2( 1 - b))y ,

the resulting kick becomes unreasonably large at large values of y.



- 12 - UPC No. 117

iy I,j: it

~ A4ly) ~(linear party

Kheifets considered the introduction of some cut-off factor but this did
not give a satisfactory answer. The subtraction procedure he finally
arrived at is

$ly) = ¢(y) - (1 - h)-¢( —jf%éj;——) ’ 0 <h<1

where h is the (yet unknown) parameter. The linear part of ¢(y) is
subtracted without introducing a large contribution at large y values.

The diffusion coefficient Dbb is now

Dbb = (nwo/4n)4< Fz(y) with %(y) instead of ¢(y)>

One can see without too much difficulty that the blow-up factor of the

beam size 4 = GV/OV is given by the expression

2
d2 = 1 + nx(average of %(y) over the distribution

of the weak bunch with 5V)

) * 2
where n (nwo/a) £ .

Kheifets then calculates (numerically) d as a function of vn for

various combinations of b and h and plotts d vs vn . The best fit

* n in ref. 2 is this n times 7.
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for SPEAR data ( b=0.035 ) has been found toc give h = 0.04 (see Fig. 4).
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Fig. 4. The comparison of calculated beam
blow up (the curve) with the measurements®

of the vertical size of the weak beam (points).
The strong bunch aspect ratio b = 0.035. The
value of the fitting parameter h = 0,04. The
bars represent the measurement errors only,
and do not include any instrumentation errors.

A point he emphasizes at the end of his paper is that the proper para-
meter for the beam instability is not ¢§& , the linear tune shift, but
n (or v¥n). The parameter vn is proportional to the square root of the
number of kicks per second and its energy dependence is E=9/2 provided

h is independent of these variables.

What really is the meaning of the subtraction procedure Heifets
introduced more or less arbitrarily? If h=0, %(y)=0 and there will be
no beam blow up. If h=1, %(y)=¢(y) and the entire beam-beam interaction
(including the linear part) contributes to the stochastic mixing of par-
ticles {(which of cburse is not the case). In this sense, the value of h
is a measure of what fraction of the beam-beam interaction plays a role
in the stochastic behavior of the beam. The particular way Kheifets
does the subtraction is really much more specific thahn that. In Fig. 5,

the "local gradient™

%(y) $(y)/y

is plotted for h=1l, 0.1, and 0.05 (enlarged by a factor ten) when b=0.04.
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Whether he intended it or not, his subtraction procedure: seems to empha-
size the beam-beam interaction around Y = (1'92)-0v as the one most
responsible for the stochastic behavior of the beam and this is more or
less independent of the value of h as long as it is less than N 0.1,

I mention this fact (which is not in ref. 2) since it fits nicely with
the model by Ruggiero. A more pronounced picture of this property will
emerge if one plots the second derivative of %(y) with respect to y.

For proton storage rings, a (damping rate) is for all practical pur-
poses . zeo. If applied directly to this case, Kheifets model gives a
trivial result that the beam blow up is infinitely large since there is
no. stationary solution. As for the parameter n in place of &, as long
as one accepts the concept of random kicks by the beam-beam interaction,
it is rather natural to say without any more elaborate argument that the
beam size will grow in time t more or less with /HE;TF'-E dependence,
the square-root of the total number of kicks times the strength of the
kicks. It is conceivable that one may gain more useful information on
the beam lifetime by solving the Fokker-Planck equation. However, be-
cause of the total lack of understanding of the nature of parameter h,
anything one says with this model about the beam lifetime of proton

storage rings will be of rather speculative nature.

One minor (major?) defect of the model is that the tune of the ma-
chine does not play any role. In most electron storage rings, the de-
pendence of the maximum achievable value cf & on the tune is not at all
insignificant. Electron beams seem to prefer the tune to be near inte-

gers. Neither is the model by Ruggiero free of this defect.

IV. Ruggiero Model®

Sandro may object to my use of the word "model" in describing his
work. His intention, which is indeed admirable, is to make the maximum
use of what we know mathematically about the nonlinear systems. The

ultimate goal in this approach is to solve nonlinear problems complete-

* The work discussed in this section is based on the talk which Ruggiero
gave on October 15th. Any progress he may have made since then is there-
fore not cowvered.
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ly - a feat worthy of at least a Heineman Prize.

Ruggiero starts by clasifying a storage ring (either for electrons
or for protons) in four categories: 1) linear and quiet, 2) linear but
noisy, 3) nonlinear but quiet, and 4) nonlinear and noisy which is the
object of the study. Here "noisy" characterizes the existence of some
diffusion mechanism such as irregular power supply ripples, RF noise,
residual gas scattering, intrabeam scattering, and quantum emission (if
electron storage rings). Nonlinear field could be either of magnets or
of beam-beam interaction but the model is clearly meant for the latter.
Again it is a case of weak-strong beam situation like Heifets madel and
it deals with one degree of freedom although there is no conceptual dif-
ficulties (technical difficulties, yes) to extend this model or the Khei-

fets model to two. or more degrees of freedom.

Class 1. linear and guiet

The beam behavior is completely* " solved ‘By“the Courant~Snyder work.
One can define the "emittance" me (or just € ) of a particle by writing

the excursion y(s) in the form
y(s) = VYe*B(s) :icos Y(s)

where s is the distance along the closed orbit,B(s) and Y(s) are, re-
spectively, the amplitude and phase function of_the betatron oscillation.
The quantity € 1is a constant of the motion, de/dt = 0.

Class 2. linear but noisy

Assume that there are a large number of small kicks which are total-
ly random. After each kick, there is no change in y but y'=dy/ds will
change by a small amount. Since each kick is uncorrelated, the net re-

sult is a diffusion,

de/dt = D,

where the diffusion parameter DO is specified by the given mechanism,

e. g., gas scattering. If the ring is made of one or more identical

* On p. 11 of Courant-Snyder (Annals of Physics, 3, 1 (1958) ), we see
the following statement: “On the boundary between stable and unstable
regions (|cos p|= 1) the treatment given here breaks down altogether.”
I am not aware of any work which clarifies this question.
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periods and the revolution time is T per period, the expected emittance

growth after n periods is

< > = . -
Ae n n-T DO

The corresponding changes in y and y' after n periods, which are called

dn and dﬂ by Ruggiero, are given by the relations

<d > <d'> = 0,
n n

2 12 =
<dn> BonTDO/Z ’ <dn. > = YOnTDO/z
where (Bo, YO) are the Courant-Snyder betatron oscillation parameters at
the point where (y, y') are observed. These are all familiar to any ac-
celerator physicist who has ever computed the effect of random errors

on the orbit whatever the origin of these errors may be.

Class 3. nonlinear but quiet

This is essentially the situation discussed in Section II. The

effect of a kick by the beam-beam interaction is again
Ay = 0 and Ay' = E-F(y) .

For a head-on collision of two round beams with the rms beam size ¢, the
shape of F(y) is shown in Fig. 6. This would be the case for our pp col-
lider. 8Since we are still far below the stochastic limit (£ <<0.25),

it is still meaningful to talk about the more or less invariant emittance
e and the tune of a particle can be considered as a function of its emit-
tance € or of the amplitude /E?TE at the interaction point.




One would naturally choose the unperturbed tune Vo (which is the tune for
all particles in the absence of nonlinear field) such that the perturbed
tune of any part of the beam, v < v <v_ + IAVEmax does not hit low-order
(order less than. V10) resonances, Ruggiero argues that, under this con=-
‘dition; because of the characteristics of Av shown in Fig. 7 schematical-
1y, reliEiyely low-order resonances will exist mostly around the ampli-
tude VB8¥-e = (1 v 2)o .

Av
Fig. 7
0 1 2 3 4 VB +e /o

Note that, mathematically speaking, resonances are everywhere dense but
the associated stochastic layer is extremely thin unless the resonance is
of low order. According to Ruggiero, stochastic layers that will become
responsible for the diffusion-like growth of the beam size are mostly near
(1L ~ 2)o . The picture seems to be a justification or a physical inter-

pretation of the subtraction procedure introduced by Kheifets.

Class 4. nonlinear and noisy

The first thing Ruggiero does for this case is to split y into two
parts: _
y =y + 8§
where § 1s the contribution from noise (all types of diffusions other
than the beam-beam interaction) and y is what one would have if the ring

is quiet but nonlinear (Class 3). For & < § (below the stochastic

limit
limit), one can still assign a more or less invariant emittance ¢ to

each particle,

A———————

v = /B¥-e cos ¥ .

With small ¢,

Ay! E*F(Y) + E-F'(y)+8 + =ovre

The effect of the first term has already been treated in Class 3 and,
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Ruggiero argues, this cannot lead to a diffusjon-like growth of the beam
size. One is then left with the second term where there is no correlation

between y and §, The crucial assumption (the word used by Ruggiero) is

now introduced. The kick Ay' can be treated as a random kick, which con-

tributes to the growth of beam size, if and only if y is in a stochastic

layer. The proper expression for Ay' is then

Ay' = P (g) 'E'F‘(§)°6

where P(e) 1is the probability for the particle with emittance € to be
in a stochastic layer. The estimate of P(g) is of course the most diffi-

cult part of this model.

Perhaps this is the right place to examine the essential difference
of Ruggiero's model from Kheifets model., Kheifets assumed that Ay' from
the beam-beam interaction can by itself be the cause of a diffusion ex-
isting even when all regular diffusion mechanism is absent. In Ruggiero's
model, the existence of regular diffusions (called "noise" by him) is ab-
solutely essential for the beam-beam interaction to be a cause of addi-
tional diffusion. If one regards the parameter h to be independent of
machine conditions, Kheifets model will still give the universal limit,
to be sure in n and not in £, of the beam-beam interaction strength.

The limiting value must apply to the ISR, the SPEAR, the doubler or any
other storage rings. In contrast with this, the model by Ruggiero em-
phasizes the importance of environment in each ring. If ring A is noisier
than ring B, the limiting strength of beam-beam interaction for A will

be lower than for B. In the limit of no noise, there will be no beam size
growth as long as one stays below the stochastic limit. The arbitrary
subtraction procedure in Kheifets model is of course quite different from
the assumption in Ruggiero's model where the concept of stochastic layers

and the randomness of phase within the layers play the essential role.

Once his assumption is accepted, the rest is straightforward, only
questibns one may have being of a purely technical nature and consequent-~

ly of no general interest. After n periods,

s =4 R 5
= + L} - -

n n & p=1 n,p p

where the first term is the effect of regular diffusions (see Class 2) and
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the second term is the accumulation of effects coming from all previous
interaction innts‘(considered to be identical); F* is the betatron am-
plitude function at the interaction point. Gn, is a function of P(s ).
F' (y ) and the phase advance y from one interaction point to the next.
If one is interested only in the onset of the effect of beam~beam inter-
action (threshold value), the second term can be considered small com-

pared to the first term,

n -
Gn = pzl an'p-dp with an = 1,

* - s
a = P(e )F' sin (n- .
n,p EB"P( p) (yp) (n-p)u
Since the phase is completely random in a stochastic layer, one defines
the average effect with the function gl(g),

W———

Y _ 2T - 2 = . * .
g(ep) = (l/Zﬂ)é [F'(Yp)] ay , Yo VB € cos P

The total diffusion is described by a new parameter Dn defined by

D_ = (2/B*T) [ <82

2
> = < > .
n n+l 6n ]

This of course is proportional to the original diffusion parameter DO .
Again I emphasize the difference from Kheifets model where D, should be

Do + Dbb and Dbb

The variation of the emittance € as a function of time t is, for m

is totally independent of Do'

identical interaction points in the ring,

2 *2 2

de/dt = D + (D /2) t* (mw /2ﬂ) £ - (P%qg)

where (mw /Zﬂ) is the number of 1nteractlon per second. The guantity P2g

should be considered as the average of P (e)g(e) when € is changing.

Since one is interested only in the threshold criterion, this point should
not be too important. The threshold criterion would be either the second

term itself small or the second term much smaller than the first term de-

pending on how one looks at the problem. One would use the desired life-~

time for t to find the safe wvalue of £ or /5;35', For the head-on
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collision, Ruggiero gives the following picture,

g(e=0) = (4m/8*)?

= .
1 5 3 Y8 %/%

Ruggiero looks at electron storage rings with this model but I will

omit the discussion since there is no new ideas introduced in it.

V. What I Think

After laboring for a report of this size, my mind usually becomes
all blurred, not an ideal condition for making a profound observation.
On the other hand, there is no guarantee that a clear mind would produce

better ideas on topics like this.,

Works by Kheifets and by Ruggiero are certainly very interesting.
They are both original in that the cause of beam size growth is sought
in the area which has never been studied quantitatively. Of the two
works, the one by Ruggiero is more satisfying to me but at the same time
more difficult to apply. The difficulty lies in the gquantitative evalu-
ation of P(c), the probability for a particle of emittance € to be in
stochastic layers. Ruggiero suggests using the expression by Chirikov

(see p. 7).,
c/s(e)

P(e) v s(e)re ' c v 1o
The trouble is that, for a small value of s(eg), the precise value of c
becomes important to make a quantitative evaluation of P. As for the
model by Kheifets, it is hard for me to imagine that the parameter h is
universal to any storage rings, electrons and protons. The particular
value he obtained from the SPEAR data, 0.04, cannot be right for the
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doubler.

It is fortunate that we have at least one accelerator physicist
active in this field, We should probably be more attentive to what Sandro
Ruggiero says‘* We should certainly be alert to developments at other
places, especially at CERN where a series of beam studies are planned in
the ISR. It is a conventional wisdom to say that we should have a com-
plete control of the chromaticity, the dispersion at the interaction
point, the power supply ripples and the rf noise. In the absence of any

unconventional wisdom, I believe it is worth repeating here.

* Whether we should follow all his advices is of course an entirely
different matter.
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