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I. Introduction

In a Lambertson magnet, the particle beam is very near to the magnet
surface (Fig. 1). As a result, the longitudinal impedance ZL and the trans-
verse impedances ZX, Zy can become very large. The objection of this note is to
make an estimate of ZL and Zx,y .

We approximate the cross section of the Lamberson magnet by an annular
stack of iron laminations of total length £, inner radius b and outer radius
b+d (Fig. 2). The beam is displaced by a distance Xq from the central axis.

Throughout this discussion, the harmonic mode number n of the beam disturbance

is restricted to below the pipe cut-off; i.e.,

5

~ 0.3 x10

<< B

(1.1)
where R ~ 105 cm is the main radius of the accelerator ring and b ~ 3 cm.

The contributibns to ZL and Zx,y due to the resistive magnet core are
derived in Sections II, III, IV by assigning to the laminated wall an ef-
fective resistivity Pefs? which is calculated in Section VII. The contributions
to the impedances due to space-charge are derived in Sections V and VI. The
magnetic and electric field will penetrate into the gaps of the magnetic
laminations leading to extra space-charge impedances. However, this effect
will be included in the effective resistivity Paff and therefore is not
discussed in Sections V and VI. Some numerical values for ZL and Zx,y for dif-
ferent disturbance frequencies are displaced in Section VIII.

II. Longitudinal Impedances Due to the Resistive Walls
Consider a disturbance in the beam which is of harmonic mode n and

current 1 in the positive z direction. Under assumption (1.1), the induced

surface current density on the beam wall of the magnet is
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1 l-g2

2mb 1+g2-2gcoss

J(83%y) = - (2.1)

with g=x,/b. Due to the resistivity of the wall, there is an electric field

at the wall parallel to J(e;xo),

E,(85%g) = Ropg J(83X0) » (2.2)

where the effective surface impedance of the wall is

eff
Reff = (1+ ) (2.3)
and the skin depth
2 p
5 =\ /—=ff (2.4)
Hw
with m=n8wc/§ the angular velocity of the disturbance and g,c its phase
velocity. Elsewhere, E;(r,8;x,) obeys
2
0.2 - 2. 2]E (r.63xg) = 0 (2.5)
When n << y,R/b with yw=(1-sw2)'1/2, we get
R_esl _ -\2 -
E,(r,65xg) = - S:g - égr ), ’ (2.6)
1+(gr”)4-2gr coss
with r“=r/b. At the beam position,
Rerfl 1442
LN . (2.7)
z 2rb 1 2
-9
therefore, the longitudinal impedance due to the resistive wall is
Rorel 2
7 = eff 1+g . . (2.8)
L 2nb 1_92

This expression can be checked by computing the average power consumed at the

wall

2m p 2
] Peff 2
p=a1f TeageT 1968l (2.9)
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which should equal

Trez)(112 .

III. Horizontal Transverse Impedance Due to the Registive Walls

A beam of current I making horizontal oscillations of amplitude A and
of harmonic frequency n can be represented by a beam dipole, i.e., two line
beams of current *I at xg,*A/2 (Fig. 3). The longitudinal electric field

due to the resistivity of the wall is obtained by differentiating Eq. (2.6):

3E,(r,03x.)
=4 0
=m3ffIA e . 29r7 - (1+(gr")%)cose

s (3.1)
2 [1+(gr‘)2-29r’cose]3

which produces through Ampere's Law a corresponding transverse magnetic field
74 ° (3.2)

At the beam dipole,

Bes =~ 3 T35 (3.3)
jumb”  (1-g%)

which displaces the beam in the horizontal direction. Thg horizontal trans-

verse impedance is defined as
it >
ZX = BpIA_’;lEx—r + (ch X §+)x e, (3'4)

where ch is the longitudinal velocity of the beam particles. Note that, due

to resistivity only, Ex+ = 0, thus giving

Refft 1 + g2

ab3 (1-.g2)3 ‘ (3-5)

_c
ZX w

This same Zx can be obtained also by equating the average power consumed by the

beam dipole

1 2
P=3c|18]°ReZ, (3.6)
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to the average power consumed at the walls

27 o
_1 eff 2 ,
P = zfo Ty 19,pde %, (3.7)

where J_(68), the surface current density due to the horizontal beam dipole,
can be obtained by differentiating Eq. (2.1) with respect to Xy i.e.,

aJ(e;xo)

3,0 = ——>14 . (3.8)
0

Note that the power consumed by the wall current Je has not been included in
(3.7) since Jg is smaller than J_ in the z-direction by a factor %? .
IV. Vertical Transverse Impedance Due to the Resistive Walls

We now consider the beam of current I making vertical oscillations of
amplitude A and harmonic frequency n at x,. This can be represented by a beam
dipole with two 1ine beams of currents I at r=x, and e=¢h/xo (Fig. 4). The
feed back electric field E;(r;e) due to the resistive walls is obtained by

differentiating Eq. (2.6),

3E. (r,0:x.)
= __2 0" A
E (rs0) = 30 Xg
- ﬁeffIA [1-(gr’)2]r’sine (4.1)

b2 [1+(gr’)2 -2 gr’cose]2

which produces a corresponding transversed magnetic field

-1 2 )
B, = o Uy x E,, (4.2)
At the beam position,
Be+ =0,
R.--1A 2
Br+ - _ eff 1+g , (4.3)

jwnb3 (1-92)3

which displaces the beam in the vertical direction.
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The vertical transverse impedance is defined as

)
= —3_ r :
Z, il (B¢ §+)_y de , (4.4)
thus giving
7 =5Reffl 1+g2 (4.5)
y w Tl'b3 (1_92)3

This same Zy can be obtained by equating the average power consumed by the

beam dipole

p =%—% (12)2 Re z, (4.6)

to the average power consumed at the wall

2t o
_ 1 eff 2
p=1f Ty (3, (e)bde)? (4.7)
where J+(e), the surface current density due to the vertical beam dipole, can

be obtained by differentiating Eq. (2.1)'with respect to 8; i.e.,

3d(8,x0)
J+(9) T a— ";;' (4.8)
We note that
Zx = Zy. ‘ (4.9)

V. Longitudinal Impedance Due to Space Charge
The contribution to ZL due to space-charge effect can be obtained by

computing the longitudinal electric self field at the beam using Ampere's Law:

§ Ede = -f B da , (5.1)
The loop is taken to be in the 8=0 plane as shown in Fig. 5. Thé magnetic

field in the loop is
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u I<x - X )
0 0 1
+ X <X <Xx_ +a,
Zn\ g X + bz/xg °o- -0
Be = : (5.2)
u
0 1 1
+ X . +a<x<b,
2n <x - Xo oy o+ bz/xoz) 0 -7 =

where a is the radius of the beam. The transverse electric field along the

loop is
X - X
A 0 1
+ Xa <X <X +a,
.Zﬂso( aZ x+b2/x§> 0 - "0
g = (5.3)
A 1 1
- + Xota<x<b,
2nso <x X0  x + b2/x§>
where the disturbed beam Tine charge density is related to the disturbed
current I by
I =2A8C . (5.4)

W
Putting everything into (5.1), we get for the self field at the beam

jwZ 1 _ a2
E, = —iz“??e * ‘“‘(% L—Sﬁ» (5.5)
ZWCBWYW l1+g
leading to
: 2
Z/n =<1 2 __1_ l + 4n 2.1_-_.9_ (5‘6)
L 0 » 7 2\2 a 2
2nR B 1+g

where Zo = 1207 ohms is the impedance of free space.

VI. Transverse Impedance Due to Space-Charge

The contribution to the transverse impedance due to space charge con-
sists of two parts: the image current effect and the beam size effect. Let
us first study the magnetic contribution. The image current due to a hori-

zontal beam dipole at x, is (Eq. (3.8))



2
3 (e) = IA2 29,-2(1+g )co;e (6.1)
mb¢  (1+g“-2gcoss)
which produces at the beam position a vertical magnetic field
u.Ila
0 1
B, = . (6.2)
Y amb? 1 - g

Note that this By is different from the one discussed in Section III where
the magnetic field arises solely from the resistivity of the walls.
The actual unperturbed beam I has a finite radius a >> A centered at

Xy and carrying a current density

I(R,83x) = =5 6(a-R) (6-3)
Ta

with R =-\/:2+x§-2rxocose , the radial distance from the beam center as shown

in Fig. 6. A horizontal disturbance ofvamp11tude A gives a perturbing current
density.
3J(R,935x,)

BXO

3 (Ryg3x,) = 4

léf §(R-a) cose (6.4)

ma

which resides solely on the beam surface and produces at the beam a vertical

magnetic self field

5 . (6.5)

Combining Eq. (6.2), (6.5) and using Eq. (3.4), we obtain for the magnetic

contribution
JZ 2
1 1
7 == |&% - —5] - (6.6)
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The contribution due to electric field can easily be included to give

; J_Zsﬁ[l_ 1”1_____1_]
x 2r |2 22 b2(1-92)2

iz s .
= -To i ___1
= - 22[2 2_22]' (6.7)

Exactly the same result is obtained for ;y'

Summing up, we have the total coupling longitudinal and transverse im-

pedances of the Lambertson magnets:

R 2 2
_Teff 1+g - ng 1 1 b 1 -
7, = —= - jz DA £+ on(2.2=9)) , (6.8)
LT 2 0 R g 2 (2 (3 1 + gz»
= 2
_Re _ 1+g9 57 2 (1 1
Z. = R - jz - . (6.9)

VII. Effective Resistivity of the Laminated Walls
When the perturbed frequency is low enough, the skin depth § may be
bigger than half the lamination thickness t. This occurs when

20 4 _ 750

[&Y)
5= = kH
21T < uRZO ‘[2 ]JR z

. (7.1)

where we have taken t~1 mm, the resistivity of iron p=73uQ. If the relative
permeability of iron HR taken as ~300 at low frequencies, this situation can
occur only for the "slow wave" of the transverse disturbance*. When this
happens the skin depth § is set to equal the thickness of the magnetic iron

core d to obtain an effective resistivity Paff

*In considering the stability due to a disturbance, through dispersion relations,
w~Nwgy for the longitudinal case while w~{n-v)w,with n>y for the transverse
_case, where wg is the longitudinal angular velocity of the beam particles and

v the natural betatron tones. For a R-1 km machine, wg/2m ~ 48 kHz.
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dzuRZOm

Peff ~ ~ 2c
which is to be substituted in Eq. (6.8) and (6.9) for the evaluation of Z

and Zx,y'

When w/21 > 229

U
R
of the wall (i.e., the edges of the laminations) and the surfaces of the gaps

kHz, the wall current is always confined to the surface

(i.e., the surfaces of the laminations).

The resistivity of iron leads to an impedance for the edges of the

laminations
=R2_
Zedge = Zmb ° (7.2)
where R = (p/68)(1+j), and an impedance for the surfaces of the gaps
JR gy &
Zgap = Ln(1+5) it (7.3)

where &/t is the number of gaps, giving an effective surface impedance (aside

from the geometry of the gap)

R =az[1+f_bzn (1+§)]- (7.4)

eff

Taking 2b - d ~ 6 cm, we see that, due to path length difference, Zedge is

smaller than Zgap by 66 times and can therefore be neglected safely. In ad-

dition, each gap has a capacitance per unit "length" 5%533 » A9 ~ .03 mm being
the gap width, giving a capacitance of
2
e md
- _0 2b
Had

- A . 0
for each gap. There is a corresponding inductance per unit "length® ?FFE s

giving an inductance of

Holg d
L = 5 an (1 +-E ) ) (7.6)

for each gap. The gap, considered as a short-circuited transmission line,

therefore has a reactance
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_ 'R jmquO d
Z_(;+T)2’n(l+3) (7.7)
and an admittance
2
Jjwe _md
ve="X— (1+2). (7.8)
0

Since b/d ~ 0(1), the characteristic impedance of the line can be approximated

by
Z, =VZI/Y , (7.9)

giving an input impedance of

Zin = Zc tanhv ZY . (7.10)

_Following Eq. (7.4), the total effective surface impedance of the laminated

walls is

Roce = 2“b<\/r—tanh\/ZY (7.11)

which is the value for R, ¢¢ to be substituted into the formulae (6.8) and

(6.9) for 7, and Z,
When /ZY << 1 , Z;,=L , and we have
b (R, I Ld
Reff B ( ™ * 2n ) an (1 + b ) (7.12)

This is exactly equivalent to the condition that the length d of the short-
circuited 1ine is much less than the reduced wavelength c/w of the disturbance;

i.e.,

= 0.80 GHz (7.13)

E? << 2 d”

corresponding* to n << R/d = 17,000. Numerically, Eq. (7.12) gives

Rype = [.024(143) /Mg + .00037 jn] ohms. (7.14)

*For transverse disturbances, in the followings, all n should be replaced by
n-v unless when n >> v.



oot
!

Again, the first term represents the resistivity of iron and the second the
geometry of the gap. The two terms are equal in magnitude when § = AO/Z/?EP.,
or when %; = 0.43 yp GHz (n=8900 ug). For such a high frequency, ug can be
taken as close to unity. Thus when n < 100 << 8900, only the resistive

part contributes and
Reff = 0024 (1+j)‘/n]JR Oth ) (7.15)

whereas when 100 < n << 17,000, Eq. (7.14) has to be used.
For still higher frequencies, we meet with resonances. The pth

resonance occurs when

In VYT = (2p-1)7 . - (7.16)
At resonance,
Z, =1, coth Re V1 (7.17)

and the figure of merit is (Aw is FWHM)

“Res
Aw

Q

= 7 coth Re /YZ . (7.18)

Since the resistive term in Eq. (7.14) becomes negligible only when
n z 890,000 >> 8900, we expect & to be small or the resonances not sharp

at all. Putting in numerical values,

. Hp 6
V=39 3 (1 By a0 (1+9) \/1+%(1-j)
0

=] (6.3 X 10-5n) \/G + 6 R (1-3) (7.19)

with uR - 1, we get for the first three resonances

Opag Q Reff at resonance
20,000 3.3 (30-4.7j) ohms
66,000 5.3 (15-1.5j) ohms
113,000 6.9 (9.7-.853) ohms
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If 2, the length of the Lambertson magnets,is ~20 m, the laminated walls
give the following contribution

n < 100 << 8,900 ,

7,/6, (x,) = 2.5 (1+]) ‘/% Qs

- 4 . R
Zx,y/Gx,y(xo) = 5.6 x 10 (1+J)'\/i: Q/cm ,

n < 2,000 << 17,000 ,
ZL/GL(xo) = [2.5 (1+j) Jug + .039] n]l e,
7 /6. (x) = [5.6 x 10% (143} 1 /=R + 8603] a/cm
XoY' X,¥y'T0 : J n :
Resonances:
nres Q [ZL/GL(XO)]reé I:Zx,‘_y/G'x,y(xo):lr'es
20,000 3.3 (3200-5003) @ (3500-5503) @/cm.
66,000 5.3 (1600-160j) (530-53j) @/cm.
113,000 6.9 (1020-903) & (200-183) Q/cm.

For n > 2,000, formula (7.10) has to be used. In above

1+ xg/b2

(x) T (%)
X =z — G X =
©O - A XITOT - 2P

are the beam displacement factors.



