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I.  INTRODUCTION
Due to wall impedance, space-charge impedance and cavities, a bunch
will exhibit bunch-shape oscillations with frequencies of the order of that

of the synchrotron oscﬂ'lat'ion.1

The most natural way to stabilize these
oscillations is to employ Landau damping. The external radio frequency (RF)

force enforcing the synchrotron motion in a stationary bucket is

F = eVRF sine,

where VRF is the peak voltage per turn, e the particle charge and ¢ the RF
phase angle measured from the synchronous position. The RF potential is

therefore

U= -eVRF cosd,

which is very nearly harmonic for small half bunch Tength L As a result,

the synchrotron frequency has very small spread
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where “sg is the synchrotron frequency for zero bunch length and

? . C . . .
(sin” :m/2) is the complete elliptic integral of the Tirst kind*. Taking
the Doubler as an example, with VRF = 2.16 MV per turn, &t extraction energy
of 1000 GeV/cZ, the spread is only 0.6% (¢m ~0.3 rad.) and at injection

energy of 150 GeV/cZ, the spread is 1.6% (¢m ~0.5 rad.).

A method to en]argé the spread of the synchrotron frequency is to add
higher harmonic cavities, commonly called the Landau cavities, such that the

RF force becomes

F

s (1o
eVRF(s1n@ ksin mo) (1.4)

and the corresponding RF potential is

(S]]

Us= -eVRF(cos¢-%-cos me). (1.

In above, k, the ratio of the Landau cavity voltage to the RF cavity voltage,
has to be small so that the effective RF voltage will not differ by too much
from the original RF voltage. Also, m should be or very near to an integer
so that the effect of the Landau cavities to each RF bucket will be nearly
the same. |

The addition of the Landau cavities leads to bigger deviation from the
harmonic well and therefore bigger spread in QS. For the extreme case of

km = 1, the ¢2 term drops out from the potential leaving

2
U= Tlevo o +onn (1.6}

when ¢ is small, and 2 is directly proportional to O
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where K(%) is the complete elliptic integral of the first kind. In other
words, the spread is now 100%.

Several people have advocated that the old CEA cavities be used in the
Doubler as Landau cavities. These cavities were originaily operated at
475 MHz which is very close to nine times the Doubler RF of 53.1 MHz. The
purpose of this note is to estimate the change in bunch Tength, microwave
instability and single bunch dipole oscillation instability when these cavities
are turned on. Throughout this note, the extreme case km = 1 is assumed. We
find that (1) bunch length increases if it is short but decreases instead if
it is long; (2) the microwave stability limit is nearly unaffected and (3)
the single bunch dipole oscillation is stabilized by a great deal. Similar

analyses have been made for the Main Ring of Fermilab by S. Ohnuma]

the ISR of CERN by F. Sacherer3. Finaily, we study the effects of varying m

and for

but keeping km = 1.

II. HAMILTONIAN, WALL INDUCTANCE AND FREQUENCY SPREAD

II.1 For a particle in a stationary bucket., the Hamiltonian is

w
H = 32 (8E)% +52 U(o)
with
_Infhe,
a=—
B°E

and the effective RF potential given by
U(¢) = -eV,-(cose -5-cos me)
RF m )

In above, AE and ¢, the energy and RF phase in excess of those of the
synchronous particle are taken as canonical variables, h = 1113 is the
harmonic number of the RF system, wo/Zn is the revolution frequency of the

~

synchronous particle around the ring, 3 is its velocity in terms of the
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velocity of light c, and n = YT—Z _Y-Z is the freguency flip factor
with Y1 the transition energy of the ring in terms of the energy of the
particle at rest.

At frequencies comparable to the RF, the wall of the beampipe is inductive

introducing a longitudinal electric field Ew at the bunch

91,
T - L 1n
EN 2mR 3t (2.4)
where L is the total wall inductance and R is the mean radius of the Doubler
ring. The instantaneous current Iin is given by
Iin = eNBcX (2.5)
with N the number of particles in the bunch and X the linear particle density
normalized to unity
i A(o,t) Rdy =1 (2.6
bunch > h ) -9
Due to this inductance, the energy of the partic]eincreasesat-the rate
4 o LeNne?c?
T AE = __—_—Z‘NR % . (2.7)
If we choose an elliptical distribution of the particles in the longi-
tudinal phase space
ro2 ak
fMEMcx@H¢MM-AEJ (2.8)
with AE(¢)max the maximum of AE at ¢, the linear line density can easily
be shown as
. _h k |
A= 2RDm ],}°5¢'C°S¢m'm (cos m¢ - cos mcbm):l (2.9)

where



- >, COS mo 200

and ’n is the half bunch length in RF radians. Thus >-/53¢ is proportional
to 3U(s)30. The effect of the inductive wall can therefore be conveniently

included in Eq. (2.1) by introducing an effective RF voltage V*:

&
H= 5 alae)?+ 52 ux(s), 2.1
U*(¢) = -eV*(coso -%—cos mo), (2.12)
where the effective RF voltage is defined as
V* eNh 2c l I 5 13
Ve | 2RV (2.13)
and the inductive impedance per harmonic in the RF region is
z . ,
e = w L . \2.]4)
xnnind 0
In a previous note4, our estimate for the Doubler was ‘Z/n|. ~5 ohms

ind
both at injection and extraction energies in the RF region (Figures 1 and 2).

This inductance mainly comes from the resistivity of the beampipe wall, the
surfaces of the laminations of the extraction Lambertsons, injection Lambertsons

and abort Lambertsons, each contributing nearly equally. If we take the number

o ]

of protons per bunch as N = ZXIOTO, R = 105cm, VRF = 2.16 MV, n = .0028. and
bunch area S = 0.3 eV-sec, then as computed in the next section, the half bunch
lengths are 0.51 (0.50) and 0.32 (0.35) at injection energy 150 Gev/c? and
extraction energy 1000 GeV/c2 respectively when the Landau cavities are turned
off (on) and m = k"1 = 9. The effective RF vo]taée V* is reduced from VRF by

3.2% (3.4%) and 12.7% (14.0%) respectively according to Eq. (2.13). The reduction
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will be more significant at higher energies and higher beam currents.
1I.2 The angular frequency Qs of the synchrotron oscillation at amplitude

o is given by

¢0
T I de
Zﬁg o anE(e) ?

using an equation of motion of the Hamiltonian (2.11) from which

¥

w Ty
BE(0) = {a—g [17(6,) -u*(m} :

The results are .shown in Figure 3 with m = 9 and different values of k.

The abscissa is the ratio of the bunch area to the bucket area with k = o
so that it is independent of the effective RF voitage. When k = o, or when

the Landau cavities are turned off, Eq. (2.15) can be integrated exactly to

give Eq. (1.3). When k is increased to 1/9, we see that Q. starts from zero

and has a spread of 100%.

ITI. BUNCH LENGTH

From the Hamiltonian (2.11), the bunch area S can be computed

o [2Ee¥*(o 7]
S he minih M(oy)

where
n/2
M(e) = fo dx sin® %-¢m cos? x
1
. 21 . 21 E
(1-sin® £ ¢ s*inzx)-l/2 1-£ 0 2T 7m¢\}
2 7m "sin® Ly sin? L /
2 *m 7 )
with

. .1 .
sin 7¢.=s1n2r¢m sin x .

When the Landau cavities are turned off, M(¢m) can be readily integrated to

(2.16)



give
M(¢m) = E(sin

where K and E are complete elliptic integrals of the first kind and second
kind respectively. Otherwise, numerical integration is necessary unless
¢ << 1. Thus,given a bunch area in eV-sec, the half bunch length o, can

be computed as a function of N{Z/n|.

ind The results are plotted in Figures 4

and 5 for various values of S at both injection and extraction energies.
We see that, for a short bunch, Landau cavities lengthen the bunch. However,
starting from ¢m ~.48 rad, the bunch is shortened instead. This is very
obvious if we look at the RF potential in Figure 6. When ¢ is small, the
potential with the Landau cavities on is flattened and therefore leads to
the lengthening of the bunch. However, when ¢ is small, the potential with
the Landau cavities on becomes steeper. This implies that changing ¢ by a
1ittle will increase AE by a lot. The bunch area, being constant, will be
compressed from a circle to a shape that is nearly square: thus the bunch is
shortened. We can also see from Figure 6 that the energy spread is always
decreased when the Landau cavities are switched on.

In our derivation, the switching on of the Landau cavities is assumed to
be adiabatic; the bunch area is therefore unchanged. However, in Sacherer's

3

derivation™, where he was considering an electron machine, the energy spread

was assumed unchanged when the Landau cavities were turned on.
[V. MICROWAVE INSTABILITY
IV.1 The Keil-Schnell criterion for microwave stability is

< Fln FWHM

ek I_in ?

0
" Mw
where F is a form factor, ~0.84 for elliptical distribution and Iin = eNBcA

is the instantaneous current. With elliptical distribution, we obtain
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Y 2
(3E) gy _ 38°EeV*D

I

7 s (4.2)
in 7 In|hIyy

which is independent of the position along the bunch. The average total
current for h bunches is

ethO

IAV il el (4.3)

Thus the stability criterion reduces to

2

7 3B V*(¢m)DmF
o < — - (4.4)
MW T hIAV
If we define
Z/n M"w . .~

where IZ/nlind is the inductive impedance at RF frequencies, the critical

number of particles per bunch NC is given by

- 2RVyp Oy 382Fr/w (4.6)
> . .

|Mw ehlgc  1+38%Fr/T

Z
Nc]ﬁ

For the Doubler, |Z/n| ~5 ohms and |Z/n|y, ~1 ohm; thus r ~5.

ind
However, in Eq. (4.6). given the bunch area S, Dm, being dependent on O
will depend on Nc also. Thus Eg. (4.6) can be solved numerically only. .The
results are plotted in Figure 7. As an example, at r =5, 5 = 0.3 eV-sec.,

the stability limits are, at 150 GeV/cZ,

11

1.29x10° " ohms Landau cavities off

Z
Nt—
Cillmy N

1.31x10°° ohms Landau cavities on

and,at 1000 Gev/cZ,
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1

{3.12x101 ohms Landau cavities off

N

Z
N MW

3

L 3.01x10

——.

1 ohms Landau cavities on .

~

Thus the changes with Landau cavities are not significant.

Remarks

1. When Landau cavities are switchedon, the critical stability limit
NC}Z/n[Mw changes by less than 10% in all cases under investigation. This
is because

Z

[ '
CIMimw in m

where AEM is the maximum energy spread. Although O is lengthened in most

cases, AEM is smaller too.

2. For any distribution, when o and AEM are small, with fixed h, wgs 1

and E,

1
AEM o d)MQS o cpmV*z.

Therefore,

But bunch area

2
m

giving

and

(4.10)

(4.11)

(4.12)
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Therefore, wall inductance will lower NCiZ/niMw although o is increased in
most cases.

3. From Egs. (4.7 and (4.8), we get

*

e

v

JA
y S

NC’ }Mw )

We see from Figure 7 that this 3/2 power dependence on S is indeed correct

when ;‘Z/n]ind +~o0 (or r+o).
4. In a previous note4, significant Tower 1imits were obtained for micro-

wave stability at zero wall impedance:

11

0.68x10' ! ohms at 150 Gev/c?

Cl%lmw

N

1

1.6x10° ' ohms at 1000 GeV/c2 .

There, a bi-Gaussian distribution in the longitudinal phase space was assumed
instead of the elliptical distribution used here. The reason is, with bi-
Gaussian distribution, (AE)FWHM is smaller and Iin is bigger.

IV.2 When the beam current or the number of particles in a bunch exceeds the
corresponding critical values for microwave stability, overshoots occur.

5

Dory's formula™ for overshoot gives

] 2
/AE2> (AE2> _ (AE }
' T. ST, ) ’
. m f in

LIy c

where the subscripts i and f denote before and after overshoot respectively,
while the subcript ¢ denotes critical. As overshoot takes place, the bunch

length will change from ¢ to PR Using elliptical distribution,

Lin WZ[nJhIAV

where j stands for i, f, or ¢. Therefore, Eq. (4.74) reduces to

(4.13)

(2.14)

(4.15)
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V*(‘i’.i)D.i V*(¢f)Df (V*(@C)Dc)z
2
Lav c

where the average total current is

1. = eNhBc
AV 2nR?
the critical current is
- eNchsc
c ZrR - ?

and Dj is given by

J

J .m

In fact, when N is increased gradually to pass Nc’ o5 > 9.
given beam energy and bunch area, the final overshoot bunch length can be found

for a given number of particles per bunch. The results are plotted in

sin mo. N
= < - .9 G )
D. sin ¢j ¢j €os ¢. m ( éj cos mmj/.

Then, for a

(4.186)

(4.18)

(4.19)

Figures 8-13. Actually there is a maximum 1imit for N, because, as it increases,

wall inductance will lower the effective RF voltage which has to be positive.

Thus the bound of N is given by

2
Z eBch
1 - N‘-w po28ch g
Ny  2RVppde
or
N‘Zl . ZRVr D¢
n N 2 r °
n MW eBch

For bunch area S = 0.3 eV-sec, r = 5, the following bounds are obtained:

(4.20)

(4.21)
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Energy P Bound for N|Z/n

‘Mu

C
1000 GeV/c2 0.45 rad 40x101O ohms (Landau on)
1000 GeV/c? 0.44 rad 41x10'9 ohms (Landau off)
150 GeV/c2 0.70 rad 17Ox101O ohms (Landau on)
150 GeV/c® 0.72 rad 170x10'© ohms (Landau off)

V.  SINGLE BUNCH INSTABILITY
V.1l We have seen that Landau cavities introduce a large spread in the oscil-
lation frequency within a bunch. Now we wish to make a quantitative estimate
of the damping effect they do to single-bunch oscillations.

Our starting point is the unperturbed Hamiltonian (2.11)

2. Y% | *
a(AE) to U (q) .

| —

H0 =

Here we have replaced the RF phase variable ¢ of an orbit in the longitudinal
phase space by g, and denote the maximum longitudinal displacement of the
orbit by G while reserving ¢m as the maximum of G Or the longitudinal edge
of the bunch, or the half length of the bunch. Thus HO = ;%-U*(qm) for the
particular orbit and H0 = ;%'U*(¢m) for the outermost orbit. It will be

convenient to change to action-angle variables 0 and 6 defined by

J = ¢ AE(q)dgq
e\ k &
=4 Sy fo dq{cosqg - cos qm-ﬁﬁcos mq - oS m%ni
and
8 =ﬁ= QS(J)
3 2m

with QS(J) given by Eq. (2.15).
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V.2 To study instability, we need to solve a Vlasov equation,

where

5(9,8) = vy (3,8) +yy (H,e)e” 1

the distribution of the bunch particles in the longitudinal phase space
has a small perturbing part wT,osc111ating with a coherent frequency {,
which in turn introduces a perturbing part of the same freguency in the

Hamiltonian

H(d,8) = H () +H (J,0)e7 98,
Since wo is time-independent, the zeroth order of Eq. (5.4) says Y,
is a function of J only. The first order gives

oy Mg duy B By
17733 38 ~ 90 38

o

with SHO/BJ = QS/Zw.

Since WT(J’S) is periodic in 6, we can write

R (J)e72wp6 _

W](Jye) = g p

Substituting it in Eq. (5.7) leads to

- dy .
- 0 ] -i2mps
-0 (D) [R(9) = -2mp 2 [ do Ky (J,8)e

where the periodicity of H1 in 8 has been used.

V.3 The perturbing Hamiltonian is given by

I Z X
Hy = fesc Iy = 3q(a);

(5.10)
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(for completeness, a proof is given in the Appendix). The perturbing
Tine density A](q) has the same coherent frequency

A * A o1t (5.11)

>
"

and is related to w1,by

A(a) = [ vy(2E,0) §d aE . (5.12)
The rigid dipole mode is the mode that can be excited most easily
and is also the most unstable mode. For this reason, we shall devote the rest

of this discussion to this mode only. By definition, for the rigid dipole

mode,
dA .
= _0=_ 2mie -

A](q) =4 @ / R](J)e d AE, (5.13)

where from
- d>‘o = h

[ada =3 [aqagdg=-ag . (5.14)
q can be deduced,

9 =--% / qu(J)ezme d AE dq . (5.15)

The RF phase g, being periodic in a = 2m6, can be Fourier expanded

94 (9) cos(2nt)a, (5.10)

thus giving
- R -
q = -5 [ dJ §;(3R(). - (5.a7)

In obtaining Eq. (5.16), we have set q = q, at & = 0; then g will vanish

at 2 = (2n+1)n/2. As a result, only odd harmonics appear 1in Eq. (5.16).
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Using Egs. (2.9), (5.13), (5.17) and (5.10), the Vlasov equation becomes

1 .
. fo ds e 2™ 8(_sing+k sin mq).

As will be shown below that, in the expansion of q in Eq. (5.16), only the
first term dominates, we can therefore retain only the first term. Then the

last integral in Eq. (5.18) can be done neatly to give
“J'I (51 ) +k J] (mq] )

where J1 is the Bessel function of order 1. In Eq. (5.18), we note that

the integral
[ dd' 4 (3")Ry(3")

is a constant independent of J. Thus we can eliminate R1 and arrive at the

dispersion relation

Cduy o
oz Ly & g (&) - )
Peig W EENE) :

or, using 9, as the dummy variable instead,

oz Ly o g dqm [J ) -k "‘qﬂ:]
n ZDm o % Q- Qs(qm)

V.4 The next task is to compute 51 as a function of G OF J. We have

ooz g
dt sa od 3J oo /)’

since H0 is a-independent. From Eg. (5.10), we know that H] is a function

of q only; so using Eqs. (5.22) and (5.3),

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)



dq . oo 204 _2q )
dt ~ " Sa\35J " 3J 3q
=2-—Taql3H__afl_]_
" o5a |\ ad ad
oH
_ 2 Mo
am 5% 3T
, 39
QS(J)Ba ?

-~

where _(J) is given by Eq. (2.15). From the Hamiltonian (5.6), we also get

S

aw L
q-4- {T° [u*(qm> -u*(qﬂ} :

Combining Egs. (5.23) and (5.24), o can be reduced as a function of q:

2,(a,) g r R
s*'m k | !
a=-—="1 dq‘{zlfosq‘-cosq -~ (cos mq' -cos mq_)| ;
Yso " mom m‘l/
= f(q).

From Eq. (5.16), we get

. 4 /2
Gpe1(9) = = [, a(d,a)cos(2n+1)a da .

Substituting Eq. (5.25) in Eq. (5.26) and changing the variable of interaction

to g, we arrive at

q
fom qf ' (q)cos [(2n+1 )f(q)]dq .

A4

Yon+1 () =

When 9, is small the Fourier expansion of g in Eq. (5.16) can be computed

exactly as

~ - 2V2 g~ (b
%n+1 7 O KT L -(2n* )T

Equation (5.27) has been computed numerically. The results, together with

(5.23)

(5.25)

(5.26)

(5.27)

(5.28)
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those in Eq. (5.28) are 1isted in Table I. We see that when the Landau
cavities are turned off i]/qm deviates from unity by less than 0.15% for
half bunch length <0.5 rad. When the Landau cavities are turned on, d1/qm
deviates from unity by less than 5%.
V.5 Now we are going to solve the dispersion relation (5.21).

The elliptical distribution (2.8), after normalization to unity, becomes

/ 5T he
Y, = _h —-UUIL— . COS qm‘-cos¢ -%—(Cos mqm - COS mmm)

o RD, \WBZEEV*/‘ L m ?

—

which is a function of e only. Subsituting in Eq. (5.21), the dispersion

relation becomes

oz MRV Y o
iN == 5 KT 05 I
n EBCh \ i m
and the dispersion integral is
i n a](sin g, -k sim mqm)!d](a1) -k J](ma1)!

~ - -1
Ez-ns(qm)_JZ’E:os qp = €OS & -% (cos mq - cos mcpm)J

where the normalized coherent frequency O and the normalized synchrotron

frequency ﬁs(qm) are defined as

Equation (5.30) can now be solved for the stability limit. Care must
be taken that V*/V given by Eq. (2.13) depends on the inductive part of
NZ/n. The results are plotted as solid curves in Figure 14 when the

Landau cavities are off and in Figure 15 when the cavities are on.

(5.29)

(5.30)

(5.31)

(5.32)
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V.6 Remarks

(1) The stability area enclosed by the stability curve is more than an order
of magnitude bigger when the Landau cavities are turned on. This is obviously
due to the extra spread of the synchrotron frequency introduced by the Landau
cavities.

(2) The stability curves at extraction energy encloses less area than the
curves at injection energy. This is because at extraction energy, the bunch
length is very much shorter. The frequency spread is therefore small, so
lTessening Landau damping.

(3) The impedance per harmonic in the RF region is Z/n ~ 5(1-i)C for both
injection and extraction energies (negative imaginary part is inductive).

Thus for a 2><]0]O

bunch, the rigid dipole mode is definitely unstable without
the Landau cavities. HoweQer, with the Landau cavities turned on, the stability
curves do not extend into the 1nduc?1ve region at all. The reason is that,

the elliptical distribution which we have assumed, has infinite slope at the
bunch edge. This singular point forces that stability curves to NZ/n = 0

rather abruptly.

Since dQS(qm)/dqrn is negative without Landau cavities and positive with
Landau cavities, the stability curves for the former situation extend into the
inductive region only while those for the latter situation extend into the
capacitive region only.

(4) In order to avoid the singular point introduced by the elliptical dis-

tribution at Gn = 9p> We try a distribution

" 2
by o l_AE(q)f,,-AEZJ | (5.33)

2
2 2)

‘which behaves 1like ~(¢m - G for small ¢m and has continuous derivative at the
bunch edge. The stability curves are also plotted in Figures 14 and 15 as

dashed curves. Because there is no singular point, the stability curves extend
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into both the inductive and capacitive regions in all cases. We see that

for NZ/n ~ 10(1-1)x10'0

ohms, the rigid dipole mode is definitely stable at
injection energy when the Landau cavities are turned on, but is only on the
edge of stability at extraction energy. An estimate of the critical [NZ/n|
will be given in the next section.

The switching of distribution from elliptical to Eq. (5.33) at this
moment will make our discussion inconsistent because the voltage reduction
of Eq. (2.13) was formulated with elliptical distribution. However, such a
computation will still remain meaningful if, by changing the distribution,
the voltage reduction is not affected too much. This may be our case because
the voltage reduction is not big anyway.

We believe that, starting from the elliptical distribution, the bunch is
unstable against dipole oscillation because the bunch edge has inifinite
gradient. The bunch edge wil] grow so lessening the gradient until it becomes

stable. In other words, the distribution will adjust itself so that the gradient

at the edge is smoothened out to such an extent that the bunch becomes stable.

VI VARIATION OF M IN LANDAU CAVITY

In this section, we vary m but keeping km = 1 and investigate the effect
of the Landau cavities on bunch length, microwave stability and single bunch
stability.
(1) Bunch length

With the Landau cavities turned on, the RF potential is

/

Ua - VRF(cos¢ --%5 cos m¢)-+constant _ (6.1)
m

which, when ¢ is small, becomes

m2-1

UOLTVRF¢>4 . (6.2)

Thus reducing m implies reducing the RF voltage, which becomes zero when
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m > 1. Thus with a fixed bunch area, bunch iength will increase and reach
inifinity when m - 1. This is illustrated in Figure 16 where the limitation
of small bunch Tength has been relaxed.
{(2) Critical microwave stability Timit

When the bunch Tength o is small, the maximum instantaneous current is
inversely proportional to L. Thus, according to Eq. (4.1),

2
(AE)Fyum * @
E

~ <%> S ’
FWHM

where S is the bunch area. As m decreases, ¢m increases. Thus, keeping $
fixed, (AE)FWHM will decrease and therefore NCIZ/nlMw will be decreased also.
(3) Single bunch stability

By numerical computation, the stability curves for m = 4 and distribution
(5.33) are plotted dash-dotted in Figure 15. We see that, at injection

energy of 150 GeV/cZ, the curve encloses a much bigger area than the m

9
curve. But at extraction energy of 1000 GeV/c2, the m = 4 curve does not
differ very much from the m = 9 curve. In order to understand this, we make
the following analysis and derive a formula for the critical NCIZ/niind.

The stability curves depend on two factors: (a) bunch length O the
bigger the bunch length the bigger the frequency spread, and (b) dQs/dqm, the
rate of spread of the synchrotron frequency. Both factors depend on m.

In all our cases ¢m<1. Thus we can try a small O approximation. (In
fact, ¢ is multiplied by m in the argument of sine or cosine in Eq.(6.1) for

example; thus an expansion in ¢, may not be justified.) Using the distribution

(5.33), the dispersion relation is



where
o
[ = J'o dq_ 29, |:s1'n qm-ksmman EJ](qT) -k J1(mq1 ):]

) k 1 = = -]
E:os q, - €os ¢m-ﬁ(cos mq - cos mqam)_ Ez-us(qm)_J
and Cm is some normalization factor of the distribution (5.33). We are
interested in the point where the stability curve crosses the Re(NZ/n)
axis. This is in fact the point 9 = O So we can expand the numerator
of Eq. (6.5) around 9, = 0 and the denominator around 9 = yielding.
4, 2 1,3, 11
s (m '1) cbm 1 X7(1-X4)

= o — [ dx
=! o] T-x
1152 Qs(¢m)

where s is defined by

and is given by Eq. (5.28)

- 2/?11’ e'ﬂ/z_
S —W ——]+e'7T .955

When On is small, the two normalization factors give

2
Lm-1 .5
On = 730 om >
ARG 4,%/2
Cn > T2 / Om J‘o dx(1-x

Putting Egs. (6.5), (6.6), (6.7) in Eq. (6.4), we arrive at

z v B 2 . F o5 o
‘N—! = 182 ———) m-1) " 6> G_(o.)
n c (VRF m

(6.5)

(6.6)

(6.7)
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in 1010

.ohms. This formula gives rather good estimates of the critical NZ/n
as shown in Table II.

We note that Eq. (6.8) depends on the deviations of the synchrotron fre-
guency at the bunch edge. From Figure 17, we see that the slope for the
m=4 synchrotron frequency curve does not change much when the particle energy
changes from 1000 GeV/c2 to 150 GeV/cz, whereas the change is very large for
the m = 9 curve, which has nearly zero siope at 150 GeV/cZ. This explains why
at 150 GeV/c2 the m=9 stability curve in Figure 15 crosses the real NZ/n axis
at a much smaller value than the m=4 curve. In Reference 2, Sacherer made his
analysis with small phase angie approximation from the beginning. He approxi-
mated the denominator of the dispersion integral (one simil?r to our Eq. (6.5))
by expanding £ ¢ around q = 0 instead. There, ﬁg a (mz-l)/2 and his formula
for critical NZ/n is
mz

N o (mP-1)62 (6.9

which does not agree with the results from numerical computation. (See last
column of Table II.)
When the Landau cavities are turned off, a small angle formula for

critical NZ/n can also be obtained:

lN%Jc - 984(V*/VRF)% MENESY (6.10)

in 1010 ohms. However‘ﬁé does not change much for ¢m up to unity, and it does
matter whether ﬁ; is computed at 9 = 0cr O Using the expansion of Eg. (1.1),

we get

3
]N%Jc = 123(v* /) 92 (10" ofms) (6.17)

The results are tabulated in Table II1I. They agree with the numerically

computed results quite well.
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CAVITY

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
OoN
ON
ON
ON
ON
ON
ON

CAVITY

OFF
OFF
OFF
OFF
OFF
OFF
OFF
CrF
OFF
OFF
OFF
CFF
OFF
CrFr
OFF
OFF
CFF
CFF
OFF
OFF
OFF

TABLE

QM OMEGA
.00000 .00000
.05000 .15405
.10000 .30436
.15000 .44741
.20000 .57982
.25000 .69873
.30000 .80175
.35000 .88712
.40000 .95378

.45000 1.00142
.50000 1.03056
.55000 1.04254
.60000 1.039s58
.65000 1.02472
.70000 1.00180

.75000 .97520
.80000 .94940
.85000 .92820
.90000 .91401
.95000 .90735
1.00000 .90716
QM OMEGA
.00000 1.00000
.05000 .99984
.10000 .99938
.15000 .99859
.20000 .997350
.25000 .99610
.30000 .99438
.35000 .99235
.40000 .99001
.45000 .98736
.50000 .598438
.55000 .98112
.60000 .97754
.65000 .973853
.70000 .96945
.75000 .96494
.80000 .96012
.85000 .955C0
.90000 .94927
.95000 .94383
1.00000 .93779

I

Ql/QM

.95501
.95524
.95600
.95714
.95883
.96105
.96382
.96718
.97116
.97578
.98102
.98683
.99307
.99946
1.00558
l1.01082
1.01454
1.01619
1.01565
1.01328
1.00982

Ql/QM

1.00000
1.00001
1.00005
1.00012
1.00021
1.00033
1.00047
1.00064
1.00084
1.00107
1.00132
1.00160
1.00191
1.00225
1.00262
1.00302
1.00345
1.00391
1.00441
1.00494
1.00530

Q3/QM Q5/QM
.04305 .00186
.04287 .00181
.04239 .00165
.04143 .00138
.04017 .00101
.0384% .00054
.03628 -.00004
.03360 -.00070
.03034 -.00144
.02647 -.00224
.02192 -.0030¢4
.01670 -.0037S
.01087 -.00440
.00460 -.00479
.00174 -.00483
.00760 -.00447
.01225 -.00369
.01508 -.00259
.01577 -.00132
.01452 -.00007
.01194 .00103
Q3/QM QS5/QM
.00000 -.00000
.00001 -.00000
.00005 -.00000
.00012 .00000
.0c0021 .00Q00
.00033 .00000
.00047 .C0000
.00064 .0000¢0
.00084 .000Q00
.00107 .00000
.00132 .00g000
.0016l .00Q000
.00182 .00001
.00226 .00001
.00263 .00001
.00304 .00002
.00347 .00002
.00394 .00003
.00445 .000Q3
.00438 .Q0004

.0055% .200053
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Table II
L. | ‘Nz/nl.. in 1070 on
m i  Energy om (o) i N/l 1? onms '
 in GeV/c? in rad "Eq. (6-8)* © Fig. 15 Sacherer®
4 1000 453 ; 1.08 145 2.5 18.0
{
4 150 1 .62 | .8 | 60.9  53.8 | 9.8
% s :
9 1000 351 | 1.45 | 12.5 5 12.5  © 26.7
9 150 509 | .38 21,2 i 24.5 173
*Assuming V* = VRF
Table III
l E i ‘ i 10
! nergy INZ/nic in 10"~ ohms
. inGev/c® 1 inrad Eq. (6-11)F | Fig. 14
: | |
L1000 311 . .358 | .31
150 .503 3.96 f 3.15

*Assuming V* = VRF
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APPENDIX

In this Appendix, we are going to derive Eg. (5.10).

In the laboratory frame, the perturbing charge density is exl(z-vt)e'ﬂt,
showing that it travels with velocity v = Bc around the ring and at the same
time oscillates around the bunch with coherent frequency Q. It can be

Fourier analyzed as

Qt (t-z/v)-iqt

»ex](z-vt)e'i e [ dw Xl(wje-iw

e [ dw i] (w-q)e”Twtti(w-R)z/v. (A1)

Due to this perturbing charge density, a particie after passing through a

distance dz will have an average increase in potential equal to

_ Z(w) * -jwt+i(w-0)z/v \
dv, = -eNgcdz j dw SH A (w-0)e (A.2
where Z(w)/2mR is the longitudinal impedance per unit length along the ring.
Because the perturbing charge density which causes bunch shape oscillation
will be nonvanishing only in the frequency range from the RF to ~10 times
the RF where Z(w)/w is almost constant, Eq. (A.2) can be simplified to
_d_V1_:_eN‘_;f do o K (wog)e- 0EF (W-R)2/Y
dz "~ 7nn W A
_ ieNZ 3 v-mt—i
=" Zm n 3t [M (z-vt)e 7| (.3)
with n = w/wo = wR/Bc. Since the coherent bunch shape oscillation frequency
Q is very much less than the RF; Eq. (A.3) can be written approximately
dv .
1 - deNZ, . 3 - -luwt )
- pa = 2_” n BC 32 }\](Z Vt)e . (A.4

The rate of increase in energy of the particle is



Going to the frame moving with the synchronous particle, the RF phase

is ¢ == %{z-vt); the negative sign comes from our convention above

transition. Then if we define

& = - (:Jg_a_A.g. e-iQt
dt -~‘2'n 50 ?



